Reputation: 267
uint32_t fail_count = 0;
...
if(is_failed)
if(fail_count < UINT32_MAX - 1 )
++fail_count;
It works fine, but this code is fragile. Tomorrow, I may change the type of fail_count
from uint32_t
to int32_t
and I forget to update UINT32_MAX
.
Is there any way to assert fail_count
is a uint32_t
at the function where I have written my if
s?
P.S. 1- I know it is easy in C++ but I'm looking for a C way.
P.S. 2- I prefer to use two asserts than relying on the compiler warnings. Checking the number size via sizeof
should work but is there any way to distinguish if type is unsigned?
Upvotes: 18
Views: 3230
Reputation: 36802
As of C11, you can use a generic selection macro to produce a result based on the type of an expression. You can use the result in a static assertion:
#define IS_UINT32(N) _Generic((N), \
uint32_t: 1, \
default: 0 \
)
int main(void) {
uint32_t fail_count = 0;
_Static_assert(IS_UINT32(fail_count), "wrong type for fail_count");
}
You could of course use the result in a regular assert()
, but _Static_assert
will fail at compile time.
A better approach could be dispatching the comparison based on type, again using generic selection:
#include <limits.h>
#include <stdint.h>
#define UNDER_LIMIT(N) ((N) < _Generic((N), \
int32_t: INT32_MAX, \
uint32_t: UINT32_MAX \
) -1)
int main(void) {
int32_t fail_count = 0;
if (UNDER_LIMIT(fail_count)) {
++fail_count;
}
}
Upvotes: 24
Reputation: 72639
What about a low-tech solution that works even with K&R C and any compiler past and present?
Place the right comment in the right place:
/*
* If this type is changed, don't forget to change the macro in
* if (fail_count < UINT32_MAX - 1) below (or file foobar.c)
*/
uint32_t fail_count = 0;
With a proper encapsulation this should refer to exactly one place in the code. Don't tell me you increment the fail count in many places. And if you do, what about a
#define FAIL_COUNT_MAX UINT32_MAX
right next to the declaration? That's more proper and clean code anyway. No need for all the assertion magic and rocket sciencery :-)
Upvotes: 1
Reputation: 26800
As you mentioned GCC, you can use a compiler extension to accomplish this in case you are not using C11:
First write a macro that emulates the C++ is_same
. And then call it with the types you want to compare.
A minimal example for your particular case:
#include<assert.h>
#define is_same(a, b) \
static_assert(__builtin_types_compatible_p(typeof(a), typeof(b)), #a " is not unsigned int")
int main()
{
int fail_count = 0;
is_same(fail_count, unsigned int);
}
The compiler asserts:
<source>: In function 'main':
<source>:4:3: error: static assertion failed: "fail_count is not unsigned int"
static_assert(__builtin_types_compatible_p(typeof(a), typeof(b)), #a " is not unsigned int")
^~~~~~~~~~~~~
<source>:9:5: note: in expansion of macro 'is_same'
is_same(fail_count, unsigned int);
^~~~~~~
See Demo
Upvotes: 1