Reputation:
The If
data constructor (If BoolType Expr Expr
) should evaluate the Boolean expression (first argument) and return the value of the second argument if it is true or return the third argument. I can construct an evaluation of the expression Expr
but I don't understand how to incorporate the nested expression BoolType
in order to evaluate an expression. A bit too twisty, I can't get my head around it.
Here's two data types:
data Expr = Val Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| If BoolType Expr Expr
data BoolType = Lit Bool
| Or BoolType BoolType
| EqualTo Expr Expr
| LessThan Expr Expr
I wrote an expression that evaluates the type:
eval :: BoolType -> Bool
eval (Lit n) = n
eval (Or e1 e2) = eval e1 || eval e2
eval (EqualTo e1 e2) = num e1 == num e2
eval (LessThan e1 e2) = num e1 < num e2
num :: Expr -> Int
num (Val n) = n
num (Add e1 e2) = num e1 + num e2
num (Sub e1 e2) = num e1 - num e2
num (Mul e1 e2) = num e1 * num e2
num (Div e1 e2) = num e1 `div` num e2
It should evaluate out to any normal equation but how do I even incorporate an If
boolean data type into the total equation?
Upvotes: 1
Views: 188
Reputation: 233125
The evaluator functions currently have incomplete pattern matches:
*Q55835635> :l 55835635.hs
[1 of 1] Compiling Q55835635 ( 55835635.hs, interpreted )
55835635.hs:22:1: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for `num': Patterns not matched: (If _ _ _)
|
22 | num (Val n) = n
| ^^^^^^^^^^^^^^^^^^^^^^^^^...
Ok, one module loaded.
Just add the missing pattern to num
:
num :: Expr -> Int
num (Val n) = n
num (Add e1 e2) = num e1 + num e2
num (Sub e1 e2) = num e1 - num e2
num (Mul e1 e2) = num e1 * num e2
num (Div e1 e2) = num e1 `div` num e2
num (If b e1 e2) = if (eval b) then num e1 else num e2
You can now evaluate expressions, including those with If
expressions:
*Q55835635> num $ Add (Val 40) (If (Lit True) (Val 2) (Val 0))
42
The rest of the functions aren't necessary.
Upvotes: 2
Reputation: 116139
You can proceed with your approach, adding a suitable equation:
value (If cond e1 e2) = ifHelper (eval cond) (value e1) (value e2)
Then, you need to define your helper:
ifHelper :: Bool -> Maybe Int -> Maybe Int -> Maybe Int
ifHelper True m1 m2 = ...
ifHelper False m1 m2 = ...
By the way, it is usually recommended to define the type of any function before starting to write the function itself. This helps both the programmer (who can reason about what type are the arguments) and the compiler (which can produce better error messages if something goes wrong).
Turning on warnings with the -Wall
flag is also a good idea, since warnings can spot several potential errors.
Upvotes: 0