Reputation: 4255
If I have a custom list of days like the one below (but it can any arbitrary days):
from datetime import datetime, timedelta
base = datetime.today()
date_list = [base - timedelta(days=x) for x in range(0, 1000)]
How can I extract the first date of each month/year from the list and separately extract the last date of the list?
One way I was thinking of doing this was if I have my list in a pandas.Series
then group the dates in their respective month/year and then look at the days of each date and take the lowest (for the first date) and highest day (for the last date).
I just don't know how to do that.
To be clear: I am trying to find the first / last day of the month inside a custom list. For example if I have only 15 Feb 2018 inside my list. This will be both the first and last day of the month for my list.
Upvotes: 1
Views: 2823
Reputation: 12714
I would use grouper and separate the min dates per month and max dates per month.
from datetime import datetime, timedelta
base = datetime.today()
date_list = [base - timedelta(days=x) for x in range(0, 35)]
df = pd.DataFrame(date_list, columns=['date_idx'])
df.index = df['date_idx']
df_min = df.groupby(pd.Grouper(freq='M')).agg(np.min).reset_index(drop=True)
df_max = df.groupby(pd.Grouper(freq='M')).agg(np.max).reset_index(drop=True)
print(df_min)
print(df_max)
Result:
date_idx
0 2019-03-21 16:16:58.991884
1 2019-04-01 16:16:58.991884
date_idx
0 2019-03-31 16:16:58.991884
1 2019-04-24 16:16:58.991884
Upvotes: 0
Reputation: 59579
Create a DataFrame then use resample
to aggregate the max and min for each month. normalize
gets rid of the time part.
import pandas as pd
(pd.DataFrame(data=pd.to_datetime(date_list).normalize(), index=date_list)
.resample('MS')[0].agg([min, max]))
# min max
#2016-07-01 2016-07-29 2016-07-31
#2016-08-01 2016-08-01 2016-08-31
#2016-09-01 2016-09-01 2016-09-30
#2016-10-01 2016-10-01 2016-10-31
#2016-11-01 2016-11-01 2016-11-30
#2016-12-01 2016-12-01 2016-12-31
#2017-01-01 2017-01-01 2017-01-31
#2017-02-01 2017-02-01 2017-02-28
#2017-03-01 2017-03-01 2017-03-31
#...
Upvotes: 3