Reputation: 2500
I have a list of dataframes. Each list element has a unique name but the column names are identical across all data frames.
I would like to paste
the name of each dataframe to the columns, so that when I cbind
them together into a single large dataframe I can distinguish between them.
Example data;
LIST <- list(df1 = data.frame("ColA" = c(1:5), "ColB" = c(10:14)),
df2 = data.frame("ColA" = c(21:25), "ColB" = c(30:34)))
str(LIST)
List of 2
$ df1:'data.frame': 5 obs. of 2 variables:
..$ ColA: int [1:5] 1 2 3 4 5
..$ ColB: int [1:5] 10 11 12 13 14
$ df2:'data.frame': 5 obs. of 2 variables:
..$ ColA: int [1:5] 21 22 23 24 25
..$ ColB: int [1:5] 30 31 32 33 34
Desired output;
List of 2
$ df1:'data.frame': 5 obs. of 2 variables:
..$ df1.ColA: int [1:5] 1 2 3 4 5
..$ df1.ColB: int [1:5] 10 11 12 13 14
$ df2:'data.frame': 5 obs. of 2 variables:
..$ df2.ColA: int [1:5] 21 22 23 24 25
..$ df2.ColB: int [1:5] 30 31 32 33 34
Upvotes: 2
Views: 1106
Reputation: 11981
Hi you can use map2
to do this:
library(tidyverse)
map2(mylist, names(mylist), ~rename_all(.x, function(z) paste(.y, z, sep = ".")))
EDIT:
or as suggested in the commenst use imap
imap(mylist, ~rename_all(.x, function(z) paste(.y, z, sep = ".")))
Upvotes: 1
Reputation: 72633
You could do this in a lapply
with global assignment <<-
.
lapply(seq_along(LIST), function(x)
names(LIST[[x]]) <<- paste0(names(LIST)[x], ".", names(LIST[[x]])))
Or using Map
as @Sotos suggested
LIST <- Map(function(x, y) {names(x) <- paste0(y, '.', names(x)); x}, LIST, names(LIST))
Yields
str(LIST)
# List of 2
# $ df1:'data.frame': 5 obs. of 2 variables:
# ..$ df1.ColA: int [1:5] 1 2 3 4 5
# ..$ df1.ColB: int [1:5] 10 11 12 13 14
# $ df2:'data.frame': 5 obs. of 2 variables:
# ..$ df2.ColA: int [1:5] 21 22 23 24 25
# ..$ df2.ColB: int [1:5] 30 31 32 33 34
Upvotes: 2
Reputation: 26343
Since you mention that you want to use cbind
later, you might use as.data.frame
right away
as.data.frame(LIST)
# df1.ColA df1.ColB df2.ColA df2.ColB
#1 1 10 21 30
#2 2 11 22 31
#3 3 12 23 32
#4 4 13 24 33
#5 5 14 25 34
Thanks to @RonakShah you can use the following lines to get back a list in case you need it
df1 <- as.data.frame(LIST)
split.default(df1, sub("\\..*", "", names(df1)))
Upvotes: 4