Reputation: 561
I have a Pandas dataframe like below, which has two arbitrary customers with 2 months' data(there are more months) and ATL_Flag which are marketing channels(there are more of them too):
|App_Flag|ATL_Flag|Cust_No|month1|month2
| 0 | TV | 1 | 1 | 0
| 0 | FB | 1 | 0 | 0
| 0 | OOH | 1 | 1 | 1
| 1 | RAD | 2 | 1 | 1
| 1 | TV | 2 | 1 | 0
| 1 | FB | 2 | 1 | 0
My goal is to construct ATL_Flags such that
1) where month value is 1 for a specific customer, cluster/concatenate ATL_Flag. E.g. from above example, for month1 & customer 1, the string should be: TVOOH and for month2 and customer 1, the string should be: OOH (month2 vector only has a single 1, corresponding to OOH).
2) Then, combine these two resulting strings for two (or more) months together like so: TVOOH->OOH
The end result should be like this:
|App_Flag|Cust_No|Path
| 0 | 1 | TVOOH->OOH |
| 1 | 2 | RADTVFB->RAD|
I have tried it with following method but it seems too slow and too convoluted:
def str_sum(channel):
return '>'.join(channel['c_path'])
wrk_data_temp = pd.melt(work_data_temp[['cust_no', 'ATL_Flag', 'max_exp_1_mnth', 'max_exp_2_mnth']], id_vars=['cust_no', 'ATL_Flag'], value_vars=['max_exp_1_mnth', 'max_exp_2_mnth'], value_name='key')
wrk_data_temp['variable'] = wrk_data_temp['variable'].str.extract(r'([\d]+)').astype(int)
wrk_data_temp['c_path'] = wrk_data_temp.sort_values(['cust_no', 'variable', 'ATL_Flag'])[wrk_data_temp.key == 1][['cust_no', 'ATL_Flag', 'variable']].groupby(['cust_no', 'variable']).transform('sum')
wrk_data_temp2 = wrk_data_temp[['cust_no', 'variable', 'c_path']].drop_duplicates()
wrk_data_temp3 = wrk_data_temp2.dropna()
final = pd.DataFrame(wrk_data_temp3[['cust_no', 'c_path']].groupby('cust_no').apply(str_sum))
Upvotes: 1
Views: 23
Reputation: 862731
First get all columns with month
s, replace 1
values by ATL_Flag
column and aggregate join
per groups and then join columns together by another join
:
c = df.filter(like='month').columns
df[c] = np.where(df[c].astype(bool), df['ATL_Flag'].values[:, None], '')
df1 = (df.groupby(['App_Flag','Cust_No'])[c]
.agg(''.join)
.apply('>'.join, axis=1)
.reset_index(name='Path'))
print (df1)
App_Flag Cust_No Path
0 0 1 TVOOH>OOH
1 1 2 RADTVFB>RAD
EDIT: For ignore 0
values in groups:
print (df)
App_Flag ATL_Flag Cust_No month1 month2 month3
0 0 TV 0 0 0 0
1 0 FB 1 0 0 0
2 0 OOH 1 0 1 1
3 1 RAD 2 1 1 0
4 1 TV 2 1 0 0
5 1 FB 3 1 0 1
c = df.filter(like='month').columns
df[c] = np.where(df[c].astype(bool), df['ATL_Flag'].values[:, None], '')
df1 = (df.groupby(['App_Flag','Cust_No'])[c]
.agg(''.join)
.apply(lambda x: '>'.join(y for y in x if y != ''), axis=1)
.reset_index(name='Path')
)
print (df1)
App_Flag Cust_No Path
0 0 0
1 0 1 OOH>OOH
2 1 2 RADTV>RAD
3 1 3 FB>FB
Upvotes: 2