Vagabond
Vagabond

Reputation: 581

Difference between O(logn) and O(nlogn)

I am preparing for software development interviews, I always faced the problem in distinguishing the difference between O(logn) and O(nLogn). Can anyone explain me with some examples or share some resource with me. I don't have any code to show. I understand O(Logn) but I haven't understood O(nlogn).

Upvotes: 45

Views: 70909

Answers (1)

MyStackRunnethOver
MyStackRunnethOver

Reputation: 5275

Think of it as O(n*log(n)), i.e. "doing log(n) work n times". For example, searching for an element in a sorted list of length n is O(log(n)). Searching for the element in n different sorted lists, each of length n is O(n*log(n)).

Remember that O(n) is defined relative to some real quantity n. This might be the size of a list, or the number of different elements in a collection. Therefore, every variable that appears inside O(...) represents something interacting to increase the runtime. O(n*m) could be written O(n_1 + n_2 + ... + n_m) and represent the same thing: "doing n, m times".

Let's take a concrete example of this, mergesort. For n input elements: On the very last iteration of our sort, we have two halves of the input, each half size n/2, and each half is sorted. All we have to do is merge them together, which takes n operations. On the next-to-last iteration, we have twice as many pieces (4) each of size n/4. For each of our two pairs of size n/4, we merge the pair together, which takes n/2 operations for a pair (one for each element in the pair, just like before), i.e. n operations for the two pairs.

From here, we can extrapolate that every level of our mergesort takes n operations to merge. The big-O complexity is therefore n times the number of levels. On the last level, the size of the chunks we're merging is n/2. Before that, it's n/4, before that n/8, etc. all the way to size 1. How many times must you divide n by 2 to get 1? log(n). So we have log(n) levels. Therefore, our total runtime is O(n (work per level) * log(n) (number of levels)), n work log(n) times.

Upvotes: 85

Related Questions