Reputation: 1982
Consider a Spark data frame df like this
+----+-------+----+----+
|bin|median|min|end|
+----+-------+----+----+
| 1| 0.0| 0| 0.5|
| 2| 1.0| 0.8| 1.7|
| 3| 2.0| 1.6| 2.5|
| 4| 4.0| 3.7| 4.7|
| 5| 6.0| 5.7| 6.3|
I would like to pull out each attribute/column as a separate dictionary/list with bin being key, meaning
median[1] = 0.0 #df[df.bin == 1]
median[key= 1,2,3,4,5] = [0.0,1.0,2.0,4.0,6.0]
min[key= 1,2,3,4,5] = [0,0.8,1.6,3.7,5.7]
I am thinking of something like mapping into rdd, how about something more "dataframe" manipulation ? Is there a way to pull out all the lists at the same time ?
median = {}
df.rdd.map(lambda row : median[row.bin] = row.median)
What is the answer if I want to pull out list instead of dictionary, assuming the bin will be numbered continuously from 1 ? How do we make sure keeping the order ? .orderBy().collect()
?
Upvotes: 1
Views: 669
Reputation: 7316
Here is another approach which provides support for both key and column filtering. The solution consists of two functions:
as_dict(df, cols, ids, key)
: returns data into a dictionaryextract_col_from_dict(dct, col, ids)
: extracts the column data from a dictionaryInitially let's extract the desired data into a dictionary from the given dataframe:
def as_dict(df, cols = [], ids = [], key = 0):
key_idx = 0
if isinstance(key, int):
key_idx = key
key = df.columns[key_idx]
elif isinstance(key, str):
key_idx = df.columns.index(key)
else:
raise Exception("Please provide a valid key e.g:{1, 'col1'}")
df = df.select("*") if not cols else df.select(*[[key] + cols])
if ids:
df = df.where(df[key].isin(ids))
return df.rdd.map(lambda x : (x[key_idx], x.asDict())).collectAsMap()
Arguments:
Let's call the function with your dataset:
df = spark.createDataFrame(
[(1, 0.0, 0., 0.5),
(2, 1.0, 0.8, 1.7),
(3, 2.0, 1.6, 2.5),
(4, 4.0, 3.7, 4.7),
(5, 6.0, 5.7, 6.3)], ["bin", "median", "min", "end"])
dict_ = as_dict(df)
dict_
{1: {'bin': 1, 'min': 0.0, 'end': 0.5, 'median': 0.0},
2: {'bin': 2, 'min': 0.8, 'end': 1.7, 'median': 1.0},
3: {'bin': 3, 'min': 1.6, 'end': 2.5, 'median': 2.0},
4: {'bin': 4, 'min': 3.7, 'end': 4.7, 'median': 4.0},
5: {'bin': 5, 'min': 5.7, 'end': 6.3, 'median': 6.0}}
# or with filters applied
dict_ = as_dict(df, cols = ['min', 'end'], ids = [1, 2, 3])
dict_
{1: {'bin': 1, 'min': 0.0, 'end': 0.5},
2: {'bin': 2, 'min': 0.8, 'end': 1.7},
3: {'bin': 3, 'min': 1.6, 'end': 2.5}}
The function will map the records to key/value pairs where the value will be also a dictionary (calling row.asDict).
After calling as_dict function the data will be located on the driver and now you can extract the data that you need with the extract_col_from_dict:
def extract_col_from_dict(dct, col, ids = []):
filtered = {}
if ids:
filtered = { key:val for key, val in dct.items() if key in ids }
else:
filtered = { key:val for key, val in dct.items() }
return [d[col] for d in list(filtered.values())]
Arguments:
And the output of the function:
min_data = extract_col_from_dict(dict_, 'min')
min_data
[0.0, 0.8, 1.6, 3.7, 5.7]
Upvotes: 1
Reputation: 43494
If you're trying to collect
your data anyway, the easiest way IMO to get the data in your desired format is via pandas.
You can call toPandas()
, set the index to bin
, and then call to_dict()
:
output = df.toPandas().set_index("bin").to_dict()
print(output)
#{'end': {1: 0.5, 2: 1.7, 3: 2.5, 4: 4.7, 5: 6.3},
# 'median': {1: 0.0, 2: 1.0, 3: 2.0, 4: 4.0, 5: 6.0},
# 'min': {1: 0.0, 2: 0.8, 3: 1.6, 4: 3.7, 5: 5.7}}
This will create a dictionary of dictionaries, where the outer key is the column name and the inner key is the bin. If you wanted separate variables, you can just extract from output
, but don't use min
as a variable name since it will stomp on __builtin__.min
.
median, min_, end = output['median'], output['min'], output['end']
print(median[1])
#0.0
Upvotes: 1