Reputation: 81
I have two data frames with timestamps (in as.POSIXct, format="%Y-%m-%d %H:%M:%S") as below.
df_ID1
ID DATETIME TIMEDIFF EV
A 2019-03-26 06:13:00 2019-03-26 00:13:00 1
B 2019-04-03 08:00:00 2019-04-03 02:00:00 1
B 2019-04-04 12:35:00 2019-04-04 06:35:00 1
df_ID0
ID DATETIME
A 2019-03-26 00:02:00
A 2019-03-26 04:55:00
A 2019-03-26 11:22:00
B 2019-04-02 20:43:00
B 2019-04-04 11:03:00
B 2019-04-06 03:12:00
I want to compare the DATETIME in df_ID1 with the DATETIME in df_ID0 that is with the same ID and the DATETIME is "smaller than but closest to" the one in df_ID1,
For the pair in two data frames that matches, I want to further compare the TIMEDIFF in df_ID1 to the matched DATETIME in df_ID0, if TIMEDIFF in df_ID1 greater than the DATETIME in df_ID0, change EV 1 to 4 in df_ID1.
My desired result is
df_ID1
ID DATETIME TIMEDIFF EV
A 2019-03-26 06:13:00 2019-03-26 00:13:00 1
B 2019-04-03 08:00:00 2019-04-03 02:00:00 4
B 2019-04-04 12:35:00 2019-04-04 06:35:00 1
I've checked how to compare timestamps and calculate the time difference, also how to change values based on criteria... But I cannot find anything to select the "smaller than but closest to" timestamps and cannot figure out how to apply all these logic too..
Any help would be appreciate!
Upvotes: 2
Views: 128
Reputation: 389135
One option using nested mapply
, is to first split
df_ID1
and df_ID0
based on ID
. Calculate the difference in time between each value in df_ID1
with that of df_ID0
of same ID
. Get the index of "smaller than but closest to" and store it in inds
and change the value to 4 if the value of corresponding TIMEDIFF
column is greater than the matched DATETIME
value.
df_ID1$EV[unlist(mapply(function(x, y) {
mapply(function(p, q) {
vals = as.numeric(difftime(p, y$DATETIME))
inds = which(vals == min(vals[vals > 0]))
q > y$DATETIME[inds]
}, x$DATETIME, x$TIMEDIFF)
}, split(df_ID1, df_ID1$ID), split(df_ID0, df_ID0$ID)))] <- 4
df_ID1
# ID DATETIME TIMEDIFF EV
#1 A 2019-03-26 06:13:00 2019-03-26 00:13:00 1
#2 B 2019-04-03 08:00:00 2019-04-03 02:00:00 4
#3 B 2019-04-04 12:35:00 2019-04-04 06:35:00 1
data
df_ID0 <- structure(list(ID = structure(c(1L, 1L, 1L, 2L, 2L, 2L),
.Label = c("A",
"B"), class = "factor"), DATETIME = structure(c(1553529720, 1553547300,
1553570520, 1554208980, 1554346980, 1554491520), class = c("POSIXct",
"POSIXt"), tzone = "")), row.names = c(NA, -6L), class = "data.frame")
df_ID1 <- structure(list(ID = structure(c(1L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), DATETIME = structure(c(1553551980, 1554249600,
1554352500), class = c("POSIXct", "POSIXt"), tzone = ""), TIMEDIFF =
structure(c(1553530380,
1554228000, 1554330900), class = c("POSIXct", "POSIXt"), tzone = ""),
EV = c(1, 1, 1)), row.names = c(NA, -3L), class = "data.frame")
Upvotes: 1
Reputation: 1424
You can do this with a for loop keeping in mind that if your actual data base is very big then the overhead would be quite bad performance wise.
for(i in 1:nrow(df_1)){
sub <- subset(df_0, ID == df_1$ID[i]) # filter on ID
df_0_dt <- max(sub[sub$DATETIME < df_1$DATETIME[i],]$DATETIME) # Take max of those with DATETIME less than (ie less than but closest to)
if(df_0_dt < df_1$TIMEDIFF[i]){ # final condition
df_1[i, "EV"] <- 4
}
}
df_1
# A tibble: 3 x 4
ID DATETIME TIMEDIFF EV
<chr> <dttm> <dttm> <dbl>
1 A 2019-03-26 06:13:00 2019-03-26 00:13:00 1
2 B 2019-04-03 08:00:00 2019-04-03 02:00:00 4
3 B 2019-04-04 12:35:00 2019-04-04 06:35:00 1
Upvotes: 2