Reputation: 83
I am getting this in
C:/Users/HP/.PyCharmCE2019.1/config/scratches/scratch.py Traceback (most recent call last):
File "C:/Users/HP/.PyCharmCE2019.1/config/scratches/scratch.py", line 25, in dtree.fit(x_train,y_train)
File "C:\Users\HP\PycharmProjects\untitled\venv\lib\site-packages\sklearn\tree\tree.py", line 801, in fit X_idx_sorted=X_idx_sorted)
File "C:\Users\HP\PycharmProjects\untitled\venv\lib\site-packages\sklearn\tree\tree.py", line 236, in fit "number of samples=%d" % (len(y), n_samples))
ValueError: Number of labels=45 does not match number of samples=36
I am using DecisionTree model but I am getting error. Help will be appreciated.
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#reading the dataset
df=pd.read_csv(r'C:\csv\kyphosis.csv')
print(df)
print(df.head())
#visualising the dataset
print(sns.pairplot(df,hue='Kyphosis',palette='Set1'))
plt.show()
#training and testing
from sklearn.modelselection import traintestsplit
c=df.drop('Kyphosis',axis=1) d=df['Kyphosis']
xtrain,ytrain,xtest,ytest=traintestsplit(c,d,testsize=0.30)
#Decision_Tree
from sklearn.tree import DecisionTreeClassifier
dtree=DecisionTreeClassifier()
dtree.fit(xtrain,ytrain)
#Predictions
predictions=dtree.predict(xtest) from sklearn.metrics import
classificationreport,confusionmatrix
print(classificationreport(ytest,predictions))
print(confusionmatrix(y_test,predictions))
Expected result should be my classification_report
and confusion_matrix
Upvotes: 2
Views: 1939
Reputation: 9481
So, the error is thrown by the function dtree.fit(xtrain, ytrain)
, because xtrain
and ytrain
have unequal length.
Checking the part of code that generates it:
xtrain,ytrain,xtest,ytest=traintestsplit(c,d,testsize=0.30)
and comparing to the example in the documentation
import numpy as np from sklearn.model_selection import train_test_split [...] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
you can see two things:
1 traintestsplit
should be train_test_split
2 by changing the order of variables left of the =
, you assign different data to these variables.
so, your code should be:
xtrain, xtest, ytrain, ytest = train_test_split(c,d,testsize=0.30)
Upvotes: 3