Ali
Ali

Reputation: 43

Spark 2.2 Join fails with huge dataset

I am currently facing issues when trying to join (inner) a huge dataset (654 GB) with a smaller one (535 MB) using Spark DataFrame API.

I am broadcasting the smaller dataset to the worker nodes using the broadcast() function.

I am unable to do the join between those two datasets. Here is a sample of the errors I got :

19/04/26 19:39:07 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 1315
19/04/26 19:39:07 INFO executor.Executor: Running task 25.1 in stage 13.0 (TID 1315)
19/04/26 19:39:07 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
19/04/26 19:39:07 INFO datasources.SQLHadoopMapReduceCommitProtocol: Using output committer class org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
19/04/26 19:39:07 INFO datasources.FileScanRDD: Reading File path: SOMEFILEPATH, range: 3087007744-3221225472, partition values: [empty row]
19/04/26 19:39:17 INFO datasources.FileScanRDD: Reading File path: SOMEFILEPATH, range: 15971909632-16106127360, partition values: [empty row]
19/04/26 19:39:24 WARN hdfs.DFSClient: DFSOutputStream ResponseProcessor exception  for block isi_hdfs_pool:blk_4549851005_134218728
java.io.IOException: Connection reset by peer
    at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
    at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
    at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
    at sun.nio.ch.IOUtil.read(IOUtil.java:197)
    at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
    at org.apache.hadoop.net.SocketInputStream$Reader.performIO(SocketInputStream.java:57)
    at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:142)
    at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
    at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
    at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:118)
    at java.io.FilterInputStream.read(FilterInputStream.java:83)
    at java.io.FilterInputStream.read(FilterInputStream.java:83)
    at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:2280)
    at org.apache.hadoop.hdfs.protocol.datatransfer.PipelineAck.readFields(PipelineAck.java:244)
    at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$ResponseProcessor.run(DFSOutputStream.java:733)
19/04/26 19:39:27 ERROR util.Utils: Aborting task
com.univocity.parsers.common.TextWritingException: Error writing row.
Internal state when error was thrown: recordCount=458089, recordData=["SOMEDATA"]
    at com.univocity.parsers.common.AbstractWriter.throwExceptionAndClose(AbstractWriter.java:916)
    at com.univocity.parsers.common.AbstractWriter.writeRow(AbstractWriter.java:706)
    at org.apache.spark.sql.execution.datasources.csv.UnivocityGenerator.write(UnivocityGenerator.scala:82)
    at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.write(CSVFileFormat.scala:139)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:327)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256)
    at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:108)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.IllegalStateException: Error closing the output.
    at com.univocity.parsers.common.AbstractWriter.close(AbstractWriter.java:861)
    at com.univocity.parsers.common.AbstractWriter.throwExceptionAndClose(AbstractWriter.java:903)
    at com.univocity.parsers.common.AbstractWriter.writeRow(AbstractWriter.java:811)
    at com.univocity.parsers.common.AbstractWriter.writeRow(AbstractWriter.java:704)
    ... 15 more
Caused by: java.io.IOException: All datanodes DatanodeInfoWithStorage[10.241.209.34:585,null,DISK] are bad. Aborting...
    at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1109)
    at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:871)
    at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:401)
19/04/26 19:39:27 WARN util.Utils: Suppressing exception in catch: Failed on local exception: java.io.IOException: Connection reset by peer; Host Details : local host is: "SOMENODEHOST"; destination host is: "SOMEDESTINATIONHOST":SOMEPORT; 
java.io.IOException: Failed on local exception: java.io.IOException: Connection reset by peer; Host Details : local host is: "SOMENODEHOST"; destination host is: "SOMEDESTINATIONHOST":SOMEPORT; 
    at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:776)
    at org.apache.hadoop.ipc.Client.call(Client.java:1479)
    at org.apache.hadoop.ipc.Client.call(Client.java:1412)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
    at com.sun.proxy.$Proxy17.delete(Unknown Source)
    at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.delete(ClientNamenodeProtocolTranslatorPB.java:540)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
    at com.sun.proxy.$Proxy18.delete(Unknown Source)
    at org.apache.hadoop.hdfs.DFSClient.delete(DFSClient.java:2044)
    at org.apache.hadoop.hdfs.DistributedFileSystem$14.doCall(DistributedFileSystem.java:707)
    at org.apache.hadoop.hdfs.DistributedFileSystem$14.doCall(DistributedFileSystem.java:703)
    at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
    at org.apache.hadoop.hdfs.DistributedFileSystem.delete(DistributedFileSystem.java:714)
    at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.abortTask(FileOutputCommitter.java:568)
    at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.abortTask(FileOutputCommitter.java:557)
    at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.abortTask(HadoopMapReduceCommitProtocol.scala:159)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$1.apply$mcV$sp(FileFormatWriter.scala:266)
    at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1384)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:108)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: Connection reset by peer
    at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
    at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
    at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
    at sun.nio.ch.IOUtil.read(IOUtil.java:197)
    at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
    at org.apache.hadoop.net.SocketInputStream$Reader.performIO(SocketInputStream.java:57)
    at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:142)
    at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
    at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
    at java.io.FilterInputStream.read(FilterInputStream.java:133)
    at java.io.FilterInputStream.read(FilterInputStream.java:133)
    at org.apache.hadoop.ipc.Client$Connection$PingInputStream.read(Client.java:520)
    at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
    at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
    at java.io.DataInputStream.readInt(DataInputStream.java:387)
    at org.apache.hadoop.ipc.Client$Connection.receiveRpcResponse(Client.java:1084)
    at org.apache.hadoop.ipc.Client$Connection.run(Client.java:979)

Before joining the large dataset with the smaller one, I tried joining 10 000 records of the first one with the entire smaller one (535 MB). I had a "Futures timed out [300 s] error".

I then increased the spark.sql.broadcastTimeout variable to 3600 s. It worked fine. But when I try joining it with the entire dataset (654 GB), it gives me the error you can see up there (TextWriting Exception).

My questions are :

You will find below some information on the cluster, the execution and the configuration of the spark job.

Some information/context:

I am working on a production environment (see the cluster configuration below). I cannot upgrade my spark version. I do not have spark UI or yarn UI to monitor my jobs. All I can retrieve are the yarn logs.

Sample of the code

def readCsv(spark: SparkSession, path: String): DataFrame = {
    spark.read
      .option("header", true)
      .option("escape", "\"")
      .option("mode", "FAILFAST")
      .csv(path)
  }

    val uh_months = readCsv(spark, input_dir_terro + "HDFS_PATH_OF_ALL_THE_CSV_FILES")
      .withColumnRenamed("NUM", "NO_NUM")
      .where(col("BEWC").isin(
        LIST OF VALUES))
      .withColumn("january", lit("1960-01-01"))

    val uh = uh_months
      .withColumn("UHDIN", datediff(to_date(unix_timestamp(col("UHDIN_YYYYMMDD"), "yyyyMMdd").cast(TimestampType)),
        to_date(unix_timestamp(col("january"), "yyyy-MM-dd").cast(TimestampType))))
      //      .withColumn("DVA_1", to_date((unix_timestamp(col("DVA"), "ddMMMyyyy")).cast(TimestampType)))
      .withColumn("DVA_1", date_format(col("DVA"), "dd/MM/yyyy"))
      .drop("UHDIN_YYYYMMDD")
      .drop("january")
      .drop("DVA")

    val uh_joined = uh.join(broadcast(smallDF), "KEY")
      .select(
        uh.col("*"),
        smallDF.col("PSP"),
        smallDF.col("minrel"),
        smallDF.col("Label"),
        smallDF.col("StartDate"))
      .where(smallDF.col("PSP").isNotNull)
      .withColumnRenamed("DVA_1", "DVA")
      .where(col("BKA").isNotNull)

smallDF being the dataframe that is 535 MB obtained after some aggregations and transformations.

Execution plan

    == Physical Plan ==
*Project [NO_NUM#252, DEV#153, DEBCRED#154, BDGRORI#155, BDGREUR#156, BEWC#157, MSG30_NL#158, SCAPMV#159, USERID#160, MMED#161, TNUM#162, NMTGP#163, BKA#164, CATEXT#165, SEQETAT#166, ACCTYPE#167, BRAND#168, FAMILY#169, SUBFAMILY#170, FORCED_DVA#172, BYBANK#173, CPTE_PROTEGE#174, HOURMV#175, RDFB#176, ... 30 more fields]
+- *BroadcastHashJoin [NO_NUM#252], [NO_NUM#13], Inner, BuildRight
   :- *Project [NUM#152 AS NO_NUM#252, DEV#153, DEBCRED#154, BDGRORI#155, BDGREUR#156, BEWC#157, MSG30_NL#158, SCAPMV#159, USERID#160, MMED#161, TNUM#162, NMTGP#163, BKA#164, CATEXT#165, SEQETAT#166, ACCTYPE#167, BRAND#168, FAMILY#169, SUBFAMILY#170, FORCED_DVA#172, BYBANK#173, CPTE_PROTEGE#174, HOURMV#175, RDFB#176, ... 26 more fields]
   :  +- *Filter ((BEWC#157 INSET (25003,25302,25114,20113,12017,20108,25046,12018,15379,15358,11011,20114,10118,12003,25097,20106,20133,10133,10142,15402,25026,25345,28023,15376,25019,28004,21701,25001,11008,15310,15003,28020,22048,15470,25300,25514,25381,25339,15099,25301,28005,28026,25098,25018,15323,25376,15804,15414,25344,25102,15458,15313,28002,25385,22051,25214,15031,12005,15425,20145,22011,15304,25027,14020,11007,25901,15343,22049,20112,12031,20127,15339,25421,15432,28025,25340,25325,20150,28011,25368,25304,22501,25369,28022,15098,12032,15375,25002,25008,10116,10101,22502,25090,15004,20105,12030,22503,15095,22007,15809,15342,15311,25216,10103,20122,11019,20142,15097,20147,20149,25005,25205,25380,15380,10120,25015,15384,11003,10110,25016,15090,25307,15001,25390,15312,10115,25219,15806,15459,12016,15359,15395,15302,12021,11701,10111,10148,25379,15807,10102,25352,25355,12010,25095,25394,20101,25413,15385,25322,28027,11026,15533,25201,25371,10128,11028,12020,15819,10143,28028,10123,10125,11020,25029,10122,25343,15015,12033,25014,12012,25024,25375,11023,25501,25402,22001,15317,12014,16114,20501,15046,12001,12022,10104,10117,12002,25499,10145,10153,12011,15350,15300,10119,25305,15345,25374,11027,25430,28021,25202,10121,28024,25101,28001,15321,11025,25358,15333,15501,25533,15372,12008,11015,10114,10113,10112,15303,15320,28006,22002,25359,10132,15497,25353,11029,25425,15374,12019,25437,11022,15357,20148,20111,26114,25099,25354,10124,25303,11010,20120,20135,15820,15331,28029) && isnotnull(BKA#164)) && isnotnull(NUM#152))
   :     +- *FileScan csv [UHDIN_YYYYMMDD#151,NUM#152,DEV#153,DEBCRED#154,BDGRORI#155,BDGREUR#156,BEWC#157,MSG30_NL#158,SCAPMV#159,USERID#160,MMED#161,TNUM#162,NMTGP#163,BKA#164,CATEXT#165,SEQETAT#166,ACCTYPE#167,BRAND#168,FAMILY#169,SUBFAMILY#170,DVA#171,FORCED_DVA#172,BYBANK#173,CPTE_PROTEGE#174,... 26 more fields] Batched: false, Format: CSV, Location: InMemoryFileIndex[hdfs://SOMEHOST:SOMEPORT/SOMEPATH..., PartitionFilters: [], PushedFilters: [In(BEWC, [25003,25302,25114,20113,12017,20108,25046,12018,15379,15358,11011,20114,10118,12003,25..., ReadSchema: struct<UHDIN_YYYYMMDD:string,NUM:string,DEV:string,DEBCRED:string,BDGRORI:string,BDGREUR:string,B...
   +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true]))
      +- *Project [NO_NUM#13, minrel#370, PSP#82, Label#105, StartDate#106]
         +- *SortMergeJoin [PSP#381], [PSP#82], Inner
            :- *Sort [PSP#381 ASC NULLS FIRST], false, 0
            :  +- Exchange hashpartitioning(PSP#381, 200)
            :     +- *Project [PSP#381, NO_NUM#13, minrel#370]
            :        +- SortMergeJoin [PSP#381, C_SNUM#14, minrel#370, NO_NUM#13], [NO_PSP#47, C_SNUM_1#387, C_NRELPR#50, NO_NUM_1#400], LeftOuter
            :           :- *Sort [PSP#381 ASC NULLS FIRST, C_SNUM#14 ASC NULLS FIRST, minrel#370 ASC NULLS FIRST, NO_NUM#13 ASC NULLS FIRST], false, 0
            :           :  +- Exchange hashpartitioning(PSP#381, C_SNUM#14, minrel#370, NO_NUM#13, 200)
            :           :     +- SortAggregate(key=[NO_PSP#12, C_SNUM#14, NO_NUM#13], functions=[min(C_NRELPR#15)])
            :           :        +- *Sort [NO_PSP#12 ASC NULLS FIRST, C_SNUM#14 ASC NULLS FIRST, NO_NUM#13 ASC NULLS FIRST], false, 0
            :           :           +- Exchange hashpartitioning(NO_PSP#12, C_SNUM#14, NO_NUM#13, 200)
            :           :              +- SortAggregate(key=[NO_PSP#12, C_SNUM#14, NO_NUM#13], functions=[partial_min(C_NRELPR#15)])
            :           :                 +- *Sort [NO_PSP#12 ASC NULLS FIRST, C_SNUM#14 ASC NULLS FIRST, NO_NUM#13 ASC NULLS FIRST], false, 0
            :           :                    +- *Project [NO_PSP#12, C_SNUM#14, NO_NUM#13, C_NRELPR#15]
            :           :                       +- *Filter (((C_NRELPR#15 IN (001,006) && C_SNUM#14 IN (030,033)) && isnotnull(NO_PSP#12)) && isnotnull(NO_NUM#13))
            :           :                          +- *FileScan csv [NO_PSP#12,NO_NUM#13,C_SNUM#14,c_nrelpr#15] Batched: false, Format: CSV, Location: InMemoryFileIndex[hdfs://SOMEHOST:SOMEPORT/SOMEPATH..., PartitionFilters: [], PushedFilters: [In(c_nrelpr, [001,006]), In(C_SNUM, [030,033]), IsNotNull(NO_PSP), IsNotNull(NO_NUM)], ReadSchema: struct<NO_PSP:string,NO_NUM:string,C_SNUM:string,c_nrelpr:string>
            :           +- *Sort [NO_PSP#47 ASC NULLS FIRST, C_SNUM_1#387 ASC NULLS FIRST, C_NRELPR#50 ASC NULLS FIRST, NO_NUM_1#400 ASC NULLS FIRST], false, 0
            :              +- Exchange hashpartitioning(NO_PSP#47, C_SNUM_1#387, C_NRELPR#50, NO_NUM_1#400, 200)
            :                 +- *Project [NO_PSP#47, NO_NUM#48 AS NO_NUM_1#400, C_SNUM#49 AS C_SNUM_1#387, c_nrelpr#50]
            :                    +- *FileScan csv [NO_PSP#47,NO_NUM#48,C_SNUM#49,c_nrelpr#50] Batched: false, Format: CSV, Location: InMemoryFileIndex[hdfs://SOMEHOST:SOMEPORT/SOMEPATH..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<NO_PSP:string,NO_NUM:string,C_SNUM:string,c_nrelpr:string>
            +- *Sort [PSP#82 ASC NULLS FIRST], false, 0
               +- Exchange hashpartitioning(PSP#82, 200)
                  +- *Project [PSP#82, Label#105, StartDate#106]
                     +- *Filter isnotnull(PSP#82)
                        +- *FileScan csv [PSP#82,Label#105,StartDate#106] Batched: false, Format: CSV, Location: InMemoryFileIndex[hdfs://SOMEHOST:SOMEPORT/SOMEPATH..., PartitionFilters: [], PushedFilters: [IsNotNull(PSP)], ReadSchema: struct<PSP:string,Label:string,StartDate:string>

Spark Version: 2.2

Cluster configuration:

Current Spark configuration:

-master: yarn

-executor-memory: 42G

-executor-cores: 5

-driver memory: 42G

-num-executors: 28

-spark.sql.broadcastTimeout=3600

-spark.kryoserializer.buffer.max=512

-spark.yarn.executor.memoryOverhead=2400

-spark.driver.maxResultSize=500m

-spark.memory.storageFraction=0.3

-spark.memory.fraction=0.9

-spark.hadoop.fs.permissions.umask-mode=007

How is the job executed:

We build an artifact (jar) with IntelliJ and then send it to a server. Then a bash script is executed. This script:

Upvotes: 3

Views: 5769

Answers (1)

abiratsis
abiratsis

Reputation: 7336

Here are some improvements regarding your code:

  1. Add repartition based on the KEY column that you join with uh, the number of partitions should approximately be 650GB / 500MB ~ 1300.
  2. Apply filtering on your datasets before joining them, in your case just execute the where clauses before the join statement.
  3. Optionally cache the small dataset
  4. Make sure that the small dataset will be broadcasted i.e you can try to save and check its size. Then adjust the value of spark.broadcast.blockSize accordingly, probably by increasing it.

Here is how your code should look like with the changes:

    val uh_months = readCsv(spark, input_dir_terro + "HDFS_PATH_OF_ALL_THE_CSV_FILES") 
      .withColumnRenamed("OLD_KEY", "KEY")
      .where(col("code").isin(LIST OF VALUES))
      .withColumn("january", lit("1960-01-01"))

    val uh = uh_months
      .withColumn("UHDIN", datediff(to_date(unix_timestamp(col("UHDIN_YYYYMMDD"), "yyyyMMdd").cast(TimestampType)),
        to_date(unix_timestamp(col("january"), "yyyy-MM-dd").cast(TimestampType))))
      //      .withColumn("field_1", to_date((unix_timestamp(col("field"), "ddMMMyyyy")).cast(TimestampType)))
      .withColumn("field_1", date_format(col("field"), "dd/MM/yyyy"))
      .drop("UHDIN_YYYYMMDD")
      .drop("january")
      .drop("field")
      .repartition(1300, $"KEY") //change 1: repartition based on KEY with 1300 (650GB/500MB~1300)

    //change 2: always prune as much information as possible before joining!
    val smallerDF = smallDF
                      .where(smallDF.col("ID").isNotNull && col("field_6").isNotNull)
                      .select("KEY", "ID", "field_3", "field_4", "field_5")

     //change 3: you can optionally cache the small dataset
    smallerDF.cache()

    //change 4: adjust spark.broadcast.blockSize i.e spark.conf.set("spark.broadcast.blockSize","16m"

    val uh_joined = uh.join(broadcast(smallerDF), "KEY")
      .select(
        uh.col("*"),
        smallerDF.col("ID"),
        smallerDF.col("field_3"),
        smallerDF.col("field_4"),
        smallerDF.col("field_5"))
      .withColumnRenamed("field_1", "field")

One last remark related to your cluster configuration, I would try to increase the num-executors at least 32 since the level of parallelization in such a big cluster should be higher.

Upvotes: 5

Related Questions