Reputation: 1596
I have an array P as shown below:
P
array([[ 0.49530662, 0.32619367, 0.54593724, -0.0224462 ],
[-0.10503237, 0.48607405, 0.28572714, 0.15175049],
[ 0.0286128 , -0.32407902, -0.56598029, -0.26743756],
[ 0.14353725, -0.35624814, 0.25655861, -0.09241335]])
and a vector y
:
y
array([0, 0, 1, 0], dtype=int16)
I want to modify another matrix Z
which has the same dimension as P
, such that Z_ij = y_j
when Z_ij < 0
.
In the above example, my Z matrix should be
Z = array([[-, -, -, 0],
[0, -, -, -],
[-, 0, 1, 0],
[-, 0, -, 0]])
Where '-' indicates the original Z
values. What I thought about is very straightforward implementation which basically iterates through each row of Z
and comparing the column values against corresponding Y
and P
. Do you know any better pythonic/numpy approach?
Upvotes: 1
Views: 612
Reputation: 846
What you need is np.where
. This is how to use it:-
import numpy as np
z = np.array([[ 0.49530662, 0.32619367, 0.54593724, -0.0224462 ],
[-0.10503237, 0.48607405, 0.28572714, 0.15175049],
[ 0.0286128 , -0.32407902, -0.56598029, -0.26743756],
[ 0.14353725, -0.35624814, 0.25655861, -0.09241335]])
y=([0, 0, 1, 0])
result = np.where(z<0,y,z)
#Where z<0, replace it by y
>>> print(result)
[[0.49530662 0.32619367 0.54593724 0. ]
[0. 0.48607405 0.28572714 0.15175049]
[0.0286128 0. 1. 0. ]
[0.14353725 0. 0.25655861 0. ]]
Upvotes: 1