Reputation: 1166
I am trying to summarise this daily time serie of rainfall by groups of 10-day periods within each month and calculate the acummulated rainfall.
library(tidyverse)
(dat <- tibble(
date = seq(as.Date("2016-01-01"), as.Date("2016-12-31"), by=1),
rainfall = rgamma(length(date), shape=2, scale=2)))
Therefore, I will obtain variability in the third group along the year, for instance: in january the third period has 11 days, february 9 days, and so on. This is my try:
library(lubridate)
dat %>%
group_by(decade=floor_date(date, "10 days")) %>%
summarize(acum_rainfall=sum(rainfall),
days = n())
this is the resulting output
# A tibble: 43 x 3
decade acum_rainfall days
<date> <dbl> <int>
1 2016-01-01 48.5 10
2 2016-01-11 39.9 10
3 2016-01-21 36.1 10
4 2016-01-31 1.87 1
5 2016-02-01 50.6 10
6 2016-02-11 32.1 10
7 2016-02-21 22.1 9
8 2016-03-01 45.9 10
9 2016-03-11 30.0 10
10 2016-03-21 42.4 10
# ... with 33 more rows
can someone help me to sum the residuals periods to the third one to obtain always 3 periods within each month? This would be the desired output (pay attention to the row 3):
decade acum_rainfall days
<date> <dbl> <int>
1 2016-01-01 48.5 10
2 2016-01-11 39.9 10
3 2016-01-21 37.97 11
4 2016-02-01 50.6 10
5 2016-02-11 32.1 10
6 2016-02-21 22.1 9
Upvotes: 0
Views: 140
Reputation: 12155
One way to do this is to use if_else
to apply floor_date
with different arguments depending on the day value of date
. If day(date)
is <30, use the normal way, if it's >= 30, then use '20 days'
to ensure it gets rounded to day 21:
dat %>%
group_by(decade=if_else(day(date) >= 30,
floor_date(date, "20 days"),
floor_date(date, "10 days"))) %>%
summarize(acum_rainfall=sum(rainfall),
days = n())
# A tibble: 36 x 3
decade acum_rainfall days
<date> <dbl> <int>
1 2016-01-01 38.8 10
2 2016-01-11 38.4 10
3 2016-01-21 43.4 11
4 2016-02-01 34.4 10
5 2016-02-11 34.8 10
6 2016-02-21 25.3 9
7 2016-03-01 39.6 10
8 2016-03-11 53.9 10
9 2016-03-21 38.1 11
10 2016-04-01 36.6 10
# … with 26 more rows
Upvotes: 2