Reputation: 3247
I have a case class
final case class FieldStateData(
job_id: String = null,
job_base_step_id: String = null,
field_id: String = null,
data_id: String = null,
data_value: String = null,
executed_unit: String = null,
is_doc: Boolean = null,
mime_type: String = null,
filename: String = null,
filesize: BigInt = null,
caption: String = null,
executor_id: String = null,
executor_name: String = null,
executor_email: String = null,
created_at: BigInt = null
)
That I want to use as part of a dataset of type Dataset[FieldStateData] to eventually insert into a database. All columns need to be nullable. How would I represent null types for numbers descended from Any rather than any string? I thought about using Option[Boolean] or something like that but will that automatically unbox during insertion or when it's used as a sql query?
Also note that the above code in not correct. Boolean types are not nullable. It's just an example.
Upvotes: 2
Views: 503
Reputation: 1631
You are correct to use Option Monad for in the case class. The field shall be unboxed by spark on read.
import org.apache.spark.sql.{Encoder, Encoders, Dataset}
final case class FieldStateData(job_id: Option[String],
job_base_step_id: Option[String],
field_id: Option[String],
data_id: Option[String],
data_value: Option[String],
executed_unit: Option[String],
is_doc: Option[Boolean],
mime_type: Option[String],
filename: Option[String],
filesize: Option[BigInt],
caption: Option[String],
executor_id: Option[String],
executor_name: Option[String],
executor_email: Option[String],
created_at: Option[BigInt])
implicit val fieldCodec: Encoder[FieldStateData] = Encoders.product[FieldStateData]
val ds: Dataset[FieldStateEncoder] = spark.read.source_name.as[FieldStateData]
When you write the Dataset
back into the database, None
become null values and Some(x)
are the values that are present.
Upvotes: 2