Reputation: 11
I want to iterate over a TF dataset in order to convert the obtained data to numpy tensors. Being new to tensorflow, this is what my code looks like
def convert_dataset_to_pytorch(self, dataset):
sess = tf.Session(config=self.config)
iterator = dataset.make_one_shot_iterator()
exampleTF, labelsTF = iterator.get_next()
examples = torch.Tensor()
labels = torch.Tensor()
try:
while True:
examples = torch.cat((examples,torch.Tensor(exampleTF.eval(session=sess))),0)
labels = torch.cat((labels,torch.Tensor([labelsTF.eval(session=sess)])),0)
except tf.errors.OutOfRangeError:
pass
return examples, labels
The apparent problem is that every call to eval() iterates both over exampleTF and labelsTF, thus skipping half of the entries. Any help? I also tried something like
def convert_dataset_to_pytorch(self, dataset):
sess = tf.Session(config=self.config)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
examples = torch.Tensor()
labels = torch.Tensor()
try:
while True:
sess.run(next_element)
examples = torch.cat((examples,torch.Tensor(next_element[0])),0)
labels = torch.cat((labels,torch.Tensor([next_element[0]])),0)
except tf.errors.OutOfRangeError:
pass
return examples, labels
but this results only in errors of the form
examples = torch.cat((examples,torch.Tensor(next_element[0])),0)
TypeError: object of type 'Tensor' has no len()
Upvotes: 0
Views: 536
Reputation: 16906
Not sure why you are creating a pytorch tensor in tensorflow when all you want is a numpy tensor. To answer your question (mentioned below)
iterate over a TF dataset in order to convert the obtained data to numpy tensors.
import numpy as np
inc_dataset = tf.data.Dataset.range(100)
dec_dataset = tf.data.Dataset.range(0, -100, -1)
dataset = tf.data.Dataset.zip((inc_dataset, dec_dataset))
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
result = list()
with tf.Session() as sess:
try:
while True:
result.append(sess.run(next_element))
except tf.errors.OutOfRangeError:
pass
examples = np.array(list(zip(*result))[0])
labels = np.array(list(zip(*result))[1])
Now you can convert examples
and labels
np arrays to pytorch or tensorflow tensors or to whatever tensors you want.
Upvotes: 2