Reputation: 429
I have dataframe df with 7 entries of phone number and I want to create new renamed columns say ph1 .. ph7 and fill them with cleaned values of phone number i.e removing spaces, "/", "-", "+" etc.
With R , I can use lapply easily is there any way to do same in Python? I know do.call() can do same but facing issue coding it for same
con_1 <- con[, c("ph1", "ph2", "ph3", "ph4", "ph5", "ph6", "ph7") :=
lapply(.SD, function(x) { gsub(paste(unlist(list(" ", "/", "-", "+")), collapse = "|"), replace = "", x) }),
.SDcols = c("phone1", "phone2", "phone3", "phone4", "phone5", "phone6", "phone7")]
dataframe con is:
kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
1: 5004490 20002075 0900031349 090891349 <NA> <NA> <NA> <NA> <NA>
2: 5003807 00601731 <NA> <NA> <NA> <NA> 088235311 <NA> <NA>
I need python equivalent for above
Upvotes: 7
Views: 18503
Reputation: 5500
Assume that you have the following dataframe (quite different from yours since nothing will be updated in yours):
# import module
import pandas as pd
# define data frame
df = pd.DataFrame(
[["5004490", "20002075", "09-00-03-13-49", "090891349", "", "", "", "", ""],
["5003807", "00601731", "", "", "", "", "08+82+35+31/1", "", ""],
["5003808", "00601731", "", "", "", "", "", "", "08/82/35/31/1"]],
columns=['kac', 'play_id', 'phone1','phone2', 'phone3', 'phone4', 'phone5','phone6', 'phone7']
)
# Display
print(df)
# kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
# 0 5004490 20002075 09-00-03-13-49 090891349
# 1 5003807 00601731 08+82+35+31/1
# 2 5003808 00601731 08/82/35/31/1
You can define a function to apply to each cell. applymap
do the job. Here I define one function clean_up_df
that will remove +
, -
and /
:
def clean_up_df(data):
rep = data.replace('/', '') # Replace '/' by ''
rep = rep.replace('-', '') # Replace '-' by ''
rep = rep.replace('+', '') # Replace '+' by ''
return rep
# Columns to process
phone_columns = ['phone1', 'phone2', 'phone3',
'phone4', 'phone5', 'phone6', 'phone7']
# Processing the function clean_up_df
df[phone_columns] = df[phone_columns].applymap(clean_up_df)
# Display
print(df)
# kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
# 0 5004490 20002075 0900031349 090891349
# 1 5003807 00601731 088235311
# 2 5003808 00601731 088235311
Now, if you want to process a specific column, you can use apply
with axis=1
meaning: Apply this function to each row of the dataframe.
Here an example:
# column to proceed
phone_col_name = "phone1"
# Same function with the column specified
def clean_up(data):
rep = data[phone_col_name].replace('/', '')
rep = rep.replace('-', '')
rep = rep.replace('+', '')
return rep
# Process
df[phone_col_name] = df.apply(clean_up, axis=1)
# Display
print(df)
# kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
# 0 5004490 20002075 0900031349 090891349
# 1 5003807 00601731 08+82+35+31/1
# 2 5003808 00601731 08/82/35/31/1
Upvotes: 5