Reputation: 141
So I have a dataframe with some weird suffixes, like _a or _b that map to certain codes, I was wondering how would you add a prefix depending on the the suffix and remove the suffix to something easier to understand.
i.e.:
red_a blue_a green_b
....
....
to
A red A blue B green
....
....
I tried
for col in df.columns:
if col.endswith('_a'):
batch_match[col].replace('_a', '')
batch_match[col].add_prefix('A ')
else:
batch_match[col].add_prefix('B ')
But it returns a df of NaN.
Upvotes: 0
Views: 889
Reputation: 43504
You can use pandas.DataFrame.rename
with a customer mapper
df = pd.DataFrame(
{"red_a": ['a', 'b', 'c'], "blue_a": [1, 2, 3], 'green_b': ['x', 'y', 'z']}
)
def renamer(col):
if any(col.endswith(suffix) for suffix in ['_a', '_b']):
prefix = col[-1] # use last char as prefix
return prefix.upper() + " " + col[:-2] # add prefix and strip last 2 chars
else:
return col
df = df.rename(mapper=renamer, axis='columns')
print(df)
# A blue B green A red
#0 1 x a
#1 2 y b
#2 3 z c
Upvotes: 1
Reputation: 323236
What I will do
df.columns=df.columns.str.split('_').map(lambda x : '{} {}'.format(x[1].upper(),x[0]))
df
Out[512]:
A red A blue B green
0 a 1 x
1 b 2 y
2 c 3 z
Upvotes: 0