Reputation: 588
I have a dataframe df
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [np.nan, 1, 2,np.nan,2,np.nan,np.nan],
'B': [10, np.nan, np.nan,5,np.nan,np.nan,7],
'C': [1,1,2,2,3,3,3]})
which looks like :
A B C
0 NaN 10.0 1
1 1.0 NaN 1
2 2.0 NaN 2
3 NaN 5.0 2
4 2.0 NaN 3
5 NaN NaN 3
6 NaN 7.0 3
I want to replace all the NAN values in column A
and B
with the value from other records which are from the same group as mentioned in column C
.
My expected output is :
A B C
0 1.0 10.0 1
1 1.0 10.0 1
2 2.0 5.0 2
3 2.0 5.0 2
4 2.0 7.0 3
5 2.0 7.0 3
6 2.0 7.0 3
How can I do the same in pandas dataframe ?
Upvotes: 4
Views: 42
Reputation: 863531
Use GroupBy.apply
with forward and back filling missing values:
df[['A','B']] = df.groupby('C')['A','B'].apply(lambda x: x.ffill().bfill())
print (df)
A B C
0 1.0 10.0 1
1 1.0 10.0 1
2 2.0 5.0 2
3 2.0 5.0 2
4 2.0 7.0 3
5 2.0 7.0 3
6 2.0 7.0 3
Upvotes: 3