Reputation: 379
I have a DataFrame that contains data similar to this:
Name Date A B C
John 19/04/2018 10 11 8
John 20/04/2018 9 7 9
John 21/04/2018 22 15 22
… … … … …
John 16/04/2019 8 8 9
John 17/04/2019 10 11 18
John 18/04/2019 8 9 11
Rich 19/04/2018 18 7 6
… … … … …
Rich 18/04/2019 19 11 17
The data can start on any day and contains at least 365 days of data, sometimes more. What I want to end up with is a DataFrame like this:
Name Date Sum
John April 356
John May 276
John June 209
Rich April 452
I need to sum up all of the months to get a year’s worth of data (April - March) but I need to be able to handle taking part of April’s total (in this example) from 2018 and part from 2019. What I would also like to do is shift the days so they are consecutive and follow on in sequence so rather than:
John 16/04/2019 8 8 9 Tuesday
John 17/04/2019 10 11 18 Wednesday
John 18/04/2019 8 9 11 Thursday
John 19/04/2019 10 11 8 Thursday (was 19/04/2018)
John 20/04/2019 9 7 9 Friday (was 20/04/2018)
It becomes
John 16/04/2019 8 8 9 Tuesday
John 17/04/2019 10 11 18 Wednesday
John 18/04/2019 8 9 11 Thursday
John 19/04/2019 9 7 9 Friday (was 20/04/2018)
Prior to summing to get the final DataFrame. Is this possible?
Additional information requested in comments
Here is a link to the initial data set https://github.com/stottp/exampledata/blob/master/SOExample.csv and the required output would be:
Name Month Total
John March 11634
John April 11470
John May 11757
John June 10968
John July 11682
John August 11631
John September 11085
John October 11924
John November 11593
John December 11714
John January 11320
John February 10167
Rich March 11594
Rich April 12383
Rich May 12506
Rich June 11112
Rich July 11636
Rich August 11303
Rich September 10667
Rich October 10992
Rich November 11721
Rich December 11627
Rich January 11669
Rich February 10335
Upvotes: 0
Views: 76
Reputation: 343
Let's see if I understood correctly. If you want to sum, I suppose you mean sum the values of columns ['A', 'B', 'C'] for each day and get the total value monthly.
If that's right, the first thing to to is set the ['Date'] column as the index so that the data frame is easier to work with:
df.set_index(df['Date'], inplace=True, drop=True)
del df['Date']
Next, you will want to add the new column ['Sum'] by re-sampling your data frame (from days to months) whilst summing the values of ['A', 'B', 'C']:
df['Sum'] = df['A'].resample('M').sum() + df['B'].resample('M').sum() + df['C'].resample('M').sum()
df['Sum'].head()
Out[37]:
Date
2012-11-30 1956265
2012-12-31 2972076
2013-01-31 2972565
2013-02-28 2696121
2013-03-31 2970687
Freq: M, dtype: int64
The last part about squashing February of 2018 and 2019 together as if they were a single month might yield from:
df['2019-02'].merge(df['2018-02'], how='outer', on=['Date', 'A', 'B', 'C'])
Test this last step and see if it works for you. Cheers
Upvotes: 1