Reputation: 7099
I'm trying to get a tf.keras model to run on a TPU using mixed precision. I was wondering how to build the keras model using bfloat16 mixed precision. Is it something like this?
with tf.contrib.tpu.bfloat16_scope():
inputs = tf.keras.layers.Input(shape=(2,), dtype=tf.bfloat16)
logits = tf.keras.layers.Dense(2)(inputs)
logits = tf.cast(logits, tf.float32)
model = tf.keras.models.Model(inputs=inputs, outputs=logits)
model.compile(optimizer=tf.keras.optimizers.Adam(.001),
loss='mean_absolute_error', metrics=[])
tpu_model = tf.contrib.tpu.keras_to_tpu_model(
model,
strategy=tf.contrib.tpu.TPUDistributionStrategy(
tf.contrib.cluster_resolver.TPUClusterResolver(tpu='my_tpu_name')
)
)
Upvotes: 13
Views: 2145
Reputation:
You can build the Keras
model using bfloat16
Mixed Precision
(float16
computations and float32
variables) using the code shown below.
tf.keras.mixed_precision.experimental.set_policy('infer_float32_vars')
model = tf.keras.Sequential([
tf.keras.layers.Inputs(input_shape=(2, ), dtype=tf.float16),
tf.keras.layers.Lambda(lambda x: tf.cast(x, 'float32')),
tf.keras.layers.Dense(10)])
model.compile(optimizer=tf.keras.optimizers.Adam(.001),
loss='mean_absolute_error', metrics=[])
model.fit(.............)
Once the model is Built and Trained, we can Save the model using the below step:
tf.keras.experimental.export_saved_model(model, path_to_save_model)
We can load the Saved Mixed Precision Keras Model using the code below:
new_model = tf.keras.experimental.load_from_saved_model(path_to_save_model)
new_model.summary()
Upvotes: 4