Niloy Saha
Niloy Saha

Reputation: 484

Vectorize pandas dataframe column lookup with array of columns

I have a pandas data frame of strings as given below.

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(97,123,size=(3, 4), dtype=np.uint8).view('S1'), columns=list('ABCD'))
df

Out:

   A  B  C  D
0  q  g  v  f
1  l  m  u  u
2  r  r  j  w

I also have a list of column names.

col_list = [['A'], ['A', 'B'], ['A', 'B', 'C']]

I want to slice df and apply an operation as follows:

df[col_list[1]].values.sum(axis=1)

Out:

array(['qg', 'lm', 'rr'], dtype=object)

Similarly, I need to do this operation for all items in col_list. I can do this in a for loop, but that will be slow with a large list. Is there any way to vectorize this, so that I can pass col_list as a numpy array and the result is a numpy 2D array of shape (len(col_list), len(df.index)).

Point is, it needs to be fast for a large list.

Upvotes: 2

Views: 291

Answers (1)

Chris
Chris

Reputation: 29742

Using numpy with r_, cumsum, and hsplit:

import numpy as np

arr_list = np.hsplit(df.loc[:, np.r_[[i for l in col_list for i in l]]].values, 
               np.cumsum(list(map(len, col_list))))
res1 = list(map(lambda x:np.sum(x, 1), arr_list))[:-1]

is about 60x faster than normal loop, in case col_list has 3000 lists:

col_list = [['A'], ['A', 'B'], ['A', 'B', 'C']] * 1000

numpy:

%%timeit

arr_list = np.hsplit(df.loc[:, np.r_[[i for l in col_list for i in l]]].values, 
               np.cumsum(list(map(len, col_list))))
res1 = list(map(lambda x:np.sum(x, 1), arr_list))[:-1]
# 24.3 ms ± 3.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

for loop:

%%timeit

for l in col_list:
    df[l].values.sum(axis=1)
# 1.53 s ± 62.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Validation:

all(all(i == j) for i,j in zip(res1, res2))
# True

Upvotes: 2

Related Questions