Reputation: 1637
How do I use group_map to apply a custom function to each group in a grouped tibble. I want to find the mean weight of each group in kg, and create a new column for each case. So every case in each group should have the same mean weight.
# custom function
meanKG = function(vector) {
return(mean(vector, na.rm=TRUE) / 2.2)
}
df = mtcars %>% group_by(cyl)
# A tibble: 32 x 11
# Groups: cyl [3]
mpg cyl disp hp drat wt qsec vs am gear carb
* <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# ... with 22 more rows
This is what I have tried:
df %>% group_map(~ meanKG(.wt))
But it keeps saying object .wt not found.
What am I doing wrong here?
Upvotes: 4
Views: 5207
Reputation: 1591
I found that modifying this answer to use group_modify()
instead of group_map()
will give the desired result
library(dplyr)
mtcars %>%
group_by(cyl) %>%
group_modify(~meanKG(.x$wt))
# A tibble: 3 × 2
# Groups: cyl [3]
cyl mean
<dbl> <dbl>
1 4 1.04
2 6 1.42
3 8 1.82
Upvotes: 0
Reputation: 389175
To use group_map
you would need to return a tibble
meanKG = function(vector) {
return(tibble::tibble(mean = mean(vector, na.rm=TRUE) / 2.2))
}
and then apply the function
library(dplyr)
mtcars %>%
group_by(cyl) %>%
group_map(~meanKG(.x$wt))
# cyl mean
# <dbl> <dbl>
#1 4 1.04
#2 6 1.42
#3 8 1.82
Upvotes: 5
Reputation: 6441
You could use mutate in case this is what you want:
mtcars %>% group_by(cyl) %>% mutate(meanKG = meanKG(wt))
# A tibble: 32 x 12
# Groups: cyl [3]
mpg cyl disp hp drat wt qsec vs am gear carb meanKG
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 1.42
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 1.42
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 1.04
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 1.42
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 1.82
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 1.42
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 1.82
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 1.04
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 1.04
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 1.42
# ... with 22 more rows
Upvotes: 3