Reputation: 142
I have a bunches object from sklearn that looks like this.
from sklearn.datasets import load_boston
import scipy
import numpy as np
boston = load_boston()
n_samples = boston.data.shape[0]
print(boston.keys())
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
I want to randomly sample 30 samples and 30 targets from the data and target keys.
X, y = [np.array([boston.data[i]]), np.array([boston.target[i]) for i in np.random(choice(n_samples, 30)])
^
SyntaxError: invalid syntax
This is all so I can plot a regression using the first feature
slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(X[:][0], y)
regression = intercept + slope*X[:][0]
boston.data
and boston.target
are both numpy arrays. How can I accomplish this?
print(type(boston.data))
<class 'numpy.ndarray'>
print(type(boston.target))
<class 'numpy.ndarray'>
Upvotes: 0
Views: 2275
Reputation: 65
You have a couple of typos (e.g. it's random.choice
) and you're also overwriting your arrays. This should work:
x = []
y = []
for i in np.random.choice(n_samples, 30):
x.append(boston.data[i])
y.append(boston.target[i])
Upvotes: 1