Reputation: 553
i have a dataframe with WooCommerce orders. in this DataFrame I have an order id and the line items. the line items is a json list of items (with lists again), prices and quantities:
[
{u'sku': u'100111', u'total_tax': u'1.11', u'product_id': 4089, u'price': 15.878505, u'tax_class': u'reduced-rate', u'variation_id': 6627, u'taxes': [{u'total': u'1.111495', u'subtotal': u'1.111495', u'id': 35}], u'name': u'prod2', u'meta_data': [{u'value': u'100501', u'id': 74675, u'key': u'SKU'}], u'subtotal_tax': u'1.11', u'total': u'15.88', u'subtotal': u'15.88', u'id': 9956, u'quantity': 1},
{u'sku': u'100222', u'total_tax': u'2.29', u'product_id': 4081, u'price': 32.700935, u'tax_class': u'reduced-rate', u'variation_id': 6632, u'taxes': [{u'total': u'2.289065', u'subtotal': u'2.289065', u'id': 35}], u'name': u'prod1', u'meta_data': [{u'value': u'100302', u'id': 74685, u'key': u'SKU'}], u'subtotal_tax': u'2.29', u'total': u'32.70', u'subtotal': u'32.70', u'id': 9957, u'quantity': 1}
]
I now need to transform all the items in the list to columns in the dataframe and also I need to make n lines (based on the number of lists in the list) out of this one liner.
do you guys have a smart idea?
Thanks! e.
//edit: this is my input:
id line_items
1234 [{u'sku': u'100111'}, {u'sku': u'100222'}]
my expected output would be
id, sku
1234, 100111
1234, 100222
Upvotes: 0
Views: 234
Reputation: 4263
pandas.io.json.json_normalize
can automatically unpack nested structures. Following is the code for your example.
from pandas.io.json import json_normalize
df = pd.DataFrame({"id": [1234], "line_items": [[{u'sku': u'100111'}, {u'sku': u'100222'}]]})
dict_df = df.to_dict(orient="records")
df = json_normalize(dict_df, record_path="line_items", meta=["id"])
The output is
sku id
0 100111 1234
1 100222 1234
You may need to reorder the columns of the output for your purpose.
Upvotes: 1
Reputation: 402523
You'll need to flatten the dictionaries into a new DataFrame. Here is an efficient comprehension you can use to do that:
pd.DataFrame(
[{'id': Y, **x} for Y, X in zip(df['id'], df['line_items']) for x in X ])
id sku
0 1234 100111
1 1234 100222
This assumes "line_items" is a column containing a list of dictionaries. If it isn't (if it is a string), you can convert it first using
import ast
df['line_items'] = df['line_items'].map(ast.literal_eval)
Another alternative is with chain
ing:
from itertools import chain
from operator import itemgetter
pd.DataFrame({
'sku': list(
map(itemgetter('sku'), chain.from_iterable(df['line_items'].tolist()))),
'id': df['id'].values.repeat(df['line_items'].str.len())})
sku id
0 100111 1234
1 100222 1234
Upvotes: 1