Reputation: 4492
I have a data frame
with products on rows and their characteristics.
I would like for every unique value in every characteristics column, to create a new dummy variable, which will have 1 if this specific characteristic value exists for that specific product and 0 otherwise.
As an example:
import pandas as pd
df = pd.DataFrame({'id':['prod_A','prod_A','prod_B','prod_B'],
'color':['red','green','red','black'],
'size':[1,2,3,4]})
and I would like to end up with a data frame
like this:
df_f = pd.DataFrame({'id': ['prod_A', 'prod_B'],
'color_red': [1, 1],
'color_green': [1, 0],
'color_black': [0, 1],
'size_1': [1, 0],
'size_2': [1, 0],
'size_3': [0, 1],
'size_4': [0, 1]})
Any ideas ?
Upvotes: 4
Views: 1492
Reputation: 863166
Use get_dummies
with aggregate max
:
#dummies for all columns without `id`
df = pd.get_dummies(df.set_index('id')).max(level=0).reset_index()
#dummies for columns in list
df = pd.get_dummies(df, columns=['color','size']).groupby('id', as_index=False).max()
print (df)
id color_black color_green color_red size_1 size_2 size_3 size_4
0 prod_A 0 1 1 1 1 0 0
1 prod_B 1 0 1 0 0 1 1
Upvotes: 5