Reputation: 2268
Hi I have the multiindex pandas dataframe. Sorry for pic, but I found it more explainable rather than plain code
Due to the data inconsistency some of my rows are missing Parent_category
. In the sample data Parent_category is empty space.
To get the data frame you see on the picture I grouped my data by Child_category
.
How can I fill the missing Parent_category field for the rows with the same Child_category
?
The index structure:
MultiIndex(levels=[['Apps', 'Bars', 'Bath', 'Beer', 'Books', 'Breakfast', 'Cellar', 'Charity', 'Cleaning', 'Clothing', 'Co-working', 'Coffee', 'Dining', 'Drugs', 'Education', 'Electronics', 'Entertainment', 'Groceries', 'Hair Cut', 'Hotel', 'Icecream', 'Lunch', 'Maintenance', 'Massage', 'Museums', 'Music', 'Parking', 'Petroleum', 'Rent', 'Repair', 'Resident', 'Snacks', 'Souvenir', 'Souvenirs', 'Spa & yoga', 'Taxi', 'Tea', 'Transport', 'Traveling', 'Visa', 'Yoga', 'Канцелярия'], ['', 'Car', 'Drinks', 'Eatings', 'Home', 'Spa & yoga', 'Transport', 'Traveling', 'Utilities', 'iTunes']],
codes=[[0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 40, 41], [9, 0, 2, 4, 0, 2, 0, 0, 3, 0, 8, 0, 1, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 4, 5, 7, 9, 1, 1, 1, 1, 4, 0, 7, 0, 0, 0, 0, 2, 0, 6, 0, 0, 5, 0]],
names=['Child_category', 'Parent_category'],
sortorder=0)
After re-indexing I get the following data frame. I guess with O(n^2) it is possible to fill the data within the loop, but looking for elegant solution.
Upvotes: 1
Views: 61
Reputation: 863256
I believe you need:
mux = pd.MultiIndex(levels=[['Apps', 'Bars', 'Bath', 'Beer', 'Books', 'Breakfast', 'Cellar', 'Charity', 'Cleaning', 'Clothing', 'Co-working', 'Coffee', 'Dining', 'Drugs', 'Education', 'Electronics', 'Entertainment', 'Groceries', 'Hair Cut', 'Hotel', 'Icecream', 'Lunch', 'Maintenance', 'Massage', 'Museums', 'Music', 'Parking', 'Petroleum', 'Rent', 'Repair', 'Resident', 'Snacks', 'Souvenir', 'Souvenirs', 'Spa & yoga', 'Taxi', 'Tea', 'Transport', 'Traveling', 'Visa', 'Yoga', 'Канцелярия'], ['', 'Car', 'Drinks', 'Eatings', 'Home', 'Spa & yoga', 'Transport', 'Traveling', 'Utilities', 'iTunes']],
codes=[[0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 40, 41], [9, 0, 2, 4, 0, 2, 0, 0, 3, 0, 8, 0, 1, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 4, 5, 7, 9, 1, 1, 1, 1, 4, 0, 7, 0, 0, 0, 0, 2, 0, 6, 0, 0, 5, 0]],
names=['Child_category', 'Parent_category'],
sortorder=0)
df = pd.DataFrame({'a': range(52)}, index=mux)
For each Child_category
level get first non empty space value:
print (df.rename({'':np.nan}, level=1)
.reset_index()
.groupby('Child_category')
.first()
.set_index('Parent_category', append=True)
.head(20))
Or replace empty spaces by values Parent_category
per groups by Child_category
:
print (df.rename({'':np.nan}, level=1)
.reset_index()
.groupby('Child_category')
.apply(lambda x: x.ffill().bfill())
.set_index(['Child_category', 'Parent_category'])
.head(20))
Upvotes: 1