asymon
asymon

Reputation: 187

Moving average for several not constant conditions

I hope find there are experts who can help)

There is such a table

X2         X3   X4  Y   Y1
01.02.2019  1   1   1   
02.02.2019  2   2   0   
02.02.2019  2   3   0   
02.02.2019  2   1   1   
03.02.2019  1   2   1   
04.02.2019  2   3   0   
05.02.2019  1   1   1   
06.02.2019  2   2   0   
07.02.2019  1   3   1   
08.02.2019  2   1   1   
09.02.2019  1   2   0   
10.02.2019  2   3   1   
11.02.2019  1   1   0   
12.02.2019  2   2   1   
13.02.2019  1   3   0   
14.02.2019  2   1   1   
15.02.2019  1   2   1   
16.02.2019  2   3   0   
17.02.2019  1   1   1   
18.02.2019  2   2   0

And in column Y1 it is necessary to calculate the moving average of column Y for the last 5 days, but only with filtering by condition X3 and X4. The filter is equal to the current value of the columns for the current row. For example, for the string 02/04/2019 2 3 0 the average will be equal to 0, because for it only the string matches the condition 02.02.2019 2 3 0

How to do this I do not understand, I know that it will be something like

filtered_X4 = df ['X4']. where (condition_1 & condition_2 & condition_3)

But how to set the conditions themselves condition_1,2,3 I do not understand.

Saw many examples when the filter is known, for example condition_1 = df ['X2']. isin ([2, 3, 5]) but that's not what i need, because my condition values change with the string

How to calculate the mean I know

df ['Y1'] = filtered_X4.shift (1) .rolling (window = 999999, min_periods = 1) .mean ()

but can't configure filtering.

add1: This is the result I'm trying to get:

X2          X3  X4  Y   Y1
01.02.2019  1   1   1   NAN
02.02.2019  2   2   0   NAN
02.02.2019  2   3   0   NAN
02.02.2019  2   1   1   NAN
03.02.2019  1   2   1   NAN
04.02.2019  2   3   0   0
05.02.2019  1   1   1   1
06.02.2019  2   2   0   0
07.02.2019  1   3   1   NAN
08.02.2019  2   1   1   NAN
09.02.2019  1   2   0   NAN
10.02.2019  2   3   1   NAN
11.02.2019  1   3   0   1
12.02.2019  2   2   1   NAN
13.02.2019  1   3   0   0
14.02.2019  2   1   1   NAN
15.02.2019  2   2   1   1
16.02.2019  2   3   0   NAN
17.02.2019  1   1   1   NAN
18.02.2019  2   2   0   1

For example, to calculate the average (Y1) of this line:

    X2          X3  X4  Y   Y1
    04.02.2019  2   3   0   

I need to take only the strings from the dateframe with X3 = 2 and X4 = 3 and X2 from 30.01.2019 to 03.02.2019

Upvotes: 0

Views: 83

Answers (1)

run-out
run-out

Reputation: 3184

To do this, use .apply()

Convert date to datetime.

df['X2'] = pd.to_datetime(df['X2'], format='%d.%m.%Y')

print(df)

           X2 X3 X4  Y
0  2019-02-01  1  1  1
1  2019-02-02  2  2  0
2  2019-02-02  2  3  0
3  2019-02-02  2  1  1
4  2019-02-03  1  2  1
5  2019-02-04  2  3  0
6  2019-02-05  1  1  1
7  2019-02-06  2  2  0
8  2019-02-07  1  3  1
9  2019-02-08  2  1  1
10 2019-02-09  1  2  0
11 2019-02-10  2  3  1
12 2019-02-11  1  3  0
13 2019-02-12  2  2  1
14 2019-02-13  1  3  0
15 2019-02-14  2  1  1
16 2019-02-15  2  2  1
17 2019-02-16  2  3  0
18 2019-02-17  1  1  1
19 2019-02-18  2  2  0

Using apply and lambda, create a df.loc filter for each row, restricting by date to the previous 5 days, and also for equality in columns X2 and X3, then calculate the mean of 'Y'.

df['Y1'] = df.apply(
    lambda x: df.loc[
        (
            (df.X2 < x.X2)
            & (df.X2 >= (x.X2 + pd.DateOffset(days=-4)))
            & (df.X3 == x.X3)
            & (df.X4 == x.X4)
        ),
        "Y",
    ].mean(),
    axis=1,
)


print(df)

           X2 X3 X4  Y   Y1
0  2019-02-01  1  1  1  NaN
1  2019-02-02  2  2  0  NaN
2  2019-02-02  2  3  0  NaN
3  2019-02-02  2  1  1  NaN
4  2019-02-03  1  2  1  NaN
5  2019-02-04  2  3  0  0.0
6  2019-02-05  1  1  1  1.0
7  2019-02-06  2  2  0  0.0
8  2019-02-07  1  3  1  NaN
9  2019-02-08  2  1  1  NaN
10 2019-02-09  1  2  0  NaN
11 2019-02-10  2  3  1  NaN
12 2019-02-11  1  3  0  1.0
13 2019-02-12  2  2  1  NaN
14 2019-02-13  1  3  0  0.0
15 2019-02-14  2  1  1  NaN
16 2019-02-15  2  2  1  1.0
17 2019-02-16  2  3  0  NaN
18 2019-02-17  1  1  1  NaN
19 2019-02-18  2  2  0  1.0

Y1 result is in dtype float since np.NaN is not compatible with integer series. If you need integers, use the following workaround.

col = 'Y1'

​

df[col] = df[col].fillna(-1)

df[col] = df[col].astype(int)

df[col] = df[col].astype(str)

df[col] = df[col].replace('-1', np.nan)

​

print(df)

           X2 X3 X4  Y   Y1
0  2019-02-01  1  1  1  NaN
1  2019-02-02  2  2  0  NaN
2  2019-02-02  2  3  0  NaN
3  2019-02-02  2  1  1  NaN
4  2019-02-03  1  2  1  NaN
5  2019-02-04  2  3  0    0
6  2019-02-05  1  1  1    1
7  2019-02-06  2  2  0    0
8  2019-02-07  1  3  1  NaN
9  2019-02-08  2  1  1  NaN
10 2019-02-09  1  2  0  NaN
11 2019-02-10  2  3  1  NaN
12 2019-02-11  1  3  0    1
13 2019-02-12  2  2  1  NaN
14 2019-02-13  1  3  0    0
15 2019-02-14  2  1  1  NaN
16 2019-02-15  2  2  1    1
17 2019-02-16  2  3  0  NaN
18 2019-02-17  1  1  1  NaN
19 2019-02-18  2  2  0    1

EDIT

Follow up question, how to apply the above daily with new data and not including old data:

You just need to filter your data to the data range you want to include.

Create a startdate in datetime

startdate = pd.to_datetime('2019-02-13')

Modify the apply function adding in an if condition:

df['Y1'] = df.apply(
    lambda x: (df.loc[
        (
            (df.X2 < x.X2)
            & (df.X2 >= (x.X2 + pd.DateOffset(days=-4)))
            & (df.X3 == x.X3)
            & (df.X4 == x.X4)
        ),
        "Y",
    ].mean()) if x[0] >= startdate else x[3]
    , axis=1
)

**This will only work after the first time you run the apply statement, otherwise you will get an out of index error. **

So run it first without the if condition then thereafter run with the if conditiion.

Upvotes: 1

Related Questions