Reputation: 1141
Because I want to remove ambiguity when I train the data. I want to clean it well. So how can I remove all rows that contain 3 words or less in python?
Upvotes: 0
Views: 1170
Reputation: 2929
df = pd.DataFrame({"mycolumn": ["", " ", "test string", "test string 1", "test string 2 2"]})
df = df.loc[df["mycolumn"].str.count(" ") >= 2]
You should never loop over a dataframe, always use vectorized operations.
Upvotes: 0
Reputation: 487
Hello World! This will be my first contribution ever to SO :-)
Let's create some data:
data = { 'Source':['Hello all Im Happy','Its a lie, dont trust him','Oops','foo','bar']}
df = pd.DataFrame (data, columns = ['Source'])
My approach is very straight forward, simple and little "brute" and inefficient,howver I ran this in a large dataframe (1013952 rows) and the time was fairly acceptable. let's find the indices of the data frame where there are more than n tokens:
from nltk.tokenize import word_tokenize
def get_indices(df,col,n):
"""
Get the indices of dataframe where exist more than n tokens in a specific column
Parameters:
df(pandas dataframe)
n(int): threshold value for minimum words
col(string): column name
"""
tmp = []
for i in range(len(df)):#df.iterrows() wasnt working for me
if len(word_tokenize(df[col][i])) < n:
tmp.append(i)
return tmp
Next we just need to call the function and drop the rows and said indices:
tmp = get_indices(df)
df_clean = df.drop(tmp)
Best!
Upvotes: 2