Reputation: 1980
I am creating a program to list out the ip address and users connected in the LAN. I done by getting the data by using nmap. Next i want to change the result data to a certain data frame using pandas or any other way. How to do it.
Here's the code:
import pandas as pd
import subprocess
from subprocess import Popen, PIPE
import re
def ipget():
i = 'nmap -sP 192.168.1.*'
output = subprocess.getoutput(i)
a = str(output).replace("Nmap","").replace("Starting 7.01 ( https://nmap.org ) at","").replace("scan report for","").replace("Host is up","").replace("latency","").replace("done: 256 IP addresses ","")
data = re.sub(r"(\(.*?\)\.)", "", a)
print(data)
#df = pd.DataFrame(data, columns = ['User', 'IP_Address'])
#print (df)
ipget()
the output stored in data and it is a string:
2019-05-21 18:19 IST
android-eb20919729f10e96 (192.168.1.8)
smackcoders (192.168.1.9)
princes-mbp (192.168.1.10)
shiv-mbp (192.168.1.15)
(4 hosts up) scanned in 18.35 seconds
Required output to be created in dataframe:
User IP_Address
android-eb20919729f10e96 192.168.1.8
smackcoders 192.168.1.9
princes-mbp 192.168.1.10
shiv-mbp 192.168.1.15
Upvotes: 1
Views: 341
Reputation: 2882
Saying you have text:
2019-05-21 18:19 IST
android-eb20919729f10e96 (192.168.1.8)
smackcoders (192.168.1.9)
princes-mbp (192.168.1.10)
shiv-mbp (192.168.1.15)
(4 hosts up) scanned in 18.35 seconds
Use regex to find the data you need:
>>> ms = re.findall(r'\n([^\s]*)\s+\((\d+\.\d+\.\d+\.\d+)\)', text)
>>> ms
[('android-eb20919729f10e96', '192.168.1.8'),
('smackcoders', '192.168.1.9'),
('princes-mbp', '192.168.1.10'),
('shiv-mbp', '192.168.1.15')]
>>> df = pd.DataFrame(ms, columns=['User', 'IP_Address'])
Comparison to other answers:
str.replace
runs once per call so the regex solution can gain huge efficiency for long logs.
Upvotes: 4
Reputation: 8273
Use StringIO
import sys
if sys.version_info[0] < 3:
from StringIO import StringIO
else:
from io import StringIO
import pandas as pd
a="""
android-eb20919729f10e96 (192.168.1.8)
smackcoders (192.168.1.9)
princes-mbp (192.168.1.10)
shiv-mbp (192.168.1.15)"""
TESTDATA = StringIO(a)
df = pd.read_csv(TESTDATA, sep=" ",names=['User','IP_Address'])
Add below line to remove (
and )
import re
df.IP_Address = df.IP_Address.map(lambda x:re.sub('\(|\)',"",x))
Upvotes: 3
Reputation: 3082
Assuming your string is named s
the following code does what you want:
line_list = []
# iterate over each line
for line in s.split("\n"):
#remove empty lines
if line == '':
continue
#replace ( and ) with empty strings
line = line.replace("(", "").replace(")", "")
line_list.append(line)
# remove first and last line
line_list = line_list[1:-1]
array = []
# split lines by " "
for line in line_list:
array.append(line.split(" "))
# create dataframe
pd.DataFrame(array, columns = ["User", "IP_Adress"])
Using listcomprehension you can do the same as a oneliner:
pd.DataFrame([line.replace("(", "").replace(")", "").split(" ") for line in s.split("\n") if line != ""][1:-1], columns = ["User", "IP_Adress"])
Upvotes: 2