Reputation: 689
I would like to use TFMA with keras model. The keras model was created with TF 2.0 alpha. The model is a pretrained model with a classification layer:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
vgg16 (Model) (None, 6, 6, 512) 14714688
_________________________________________________________________
flatten (Flatten) (None, 18432) 0
_________________________________________________________________
dense_5 (Dense) (None, 2) 36866
up_one_dir
method is a utility function to copy files to the model's root folder. The files will be used by export_eval_savedmodel
.
TFX / TFMA code is using the following versions:
TFMA version: 0.13.2
TFDV version: 0.13.1
TF version: 1.13.1
The code is:
# Load model
new_model = keras.models.load_model(model_name)
new_model.summary()
# keras model to estimator
estimator_model = tf.keras.estimator.model_to_estimator(new_model,model_dir=TF_MODEL_DIR)]]
# The receiver function for the estimator
def eval_input_receiver_1_fn():
serialized_tf_example = tf.compat.v1.placeholder(dtype=tf.string, shape=[None], name='input_example_placeholder')
receiver_tensors = {'examples': serialized_tf_example}
validation_features_columns = [tf.feature_column.numeric_column("image",shape=(192,192)),
tf.feature_column.categorical_column_with_vocabulary_list("label",["normal_healthy","sick"])]
feature_spec = tf.feature_column.make_parse_example_spec(validation_features_columns)
features = tf.io.parse_example(serialized_tf_example, feature_spec)
return tfma.export.EvalInputReceiver(
features=features,
receiver_tensors=receiver_tensors,
labels=features['label'])
import os
import shutil
from pathlib import Path
def up_one_dir(path):
"""Move all file in path up one"""
parent_dir = str(Path(path).parents[0])
for f in os.listdir(path):
shutil.copy(os.path.join(path,f),parent_dir)
#shutil.rmtree(path)
up_one_dir(KERAS_FOLDER)
tfma.export.export_eval_savedmodel(estimator=estimator_model,
export_dir_base=EXPORT_DIR,
eval_input_receiver_fn=eval_input_receiver_1_fn)
The following error is fired regarding the pre-trained model features:
KeyErrorTraceback (most recent call last)
<ipython-input-137-b275096a314a> in <module>()
1 tfma.export.export_eval_savedmodel(estimator=estimator_model,
2 export_dir_base=EXPORT_DIR,
----> 3 eval_input_receiver_fn=eval_input_receiver_1_fn)
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_model_analysis/util.pyc in wrapped_fn(*args, **kwargs)
171 (fn.__name__, kwargs.keys()))
172
--> 173 return fn(**kwargs_to_pass)
174
175 return wrapped_fn
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_model_analysis/eval_saved_model/export.pyc in export_eval_savedmodel(estimator, export_dir_base, eval_input_receiver_fn, serving_input_receiver_fn, assets_extra, checkpoint_path)
472 },
473 assets_extra=assets_extra,
--> 474 checkpoint_path=checkpoint_path)
475
476
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow/python/util/deprecation.pyc in new_func(*args, **kwargs)
322 'in a future version' if date is None else ('after %s' % date),
323 instructions)
--> 324 return func(*args, **kwargs)
325 return tf_decorator.make_decorator(
326 func, new_func, 'deprecated',
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/contrib/estimator/python/estimator/export.pyc in export_all_saved_models(estimator, export_dir_base, input_receiver_fn_map, assets_extra, as_text, checkpoint_path)
206 assets_extra=assets_extra,
207 as_text=as_text,
--> 208 checkpoint_path=checkpoint_path)
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/estimator.pyc in experimental_export_all_saved_models(self, export_dir_base, input_receiver_fn_map, assets_extra, as_text, checkpoint_path)
820 self._add_meta_graph_for_mode(
821 builder, input_receiver_fn_map, checkpoint_path,
--> 822 save_variables, mode=model_fn_lib.ModeKeys.EVAL)
823 save_variables = False
824 if input_receiver_fn_map.get(model_fn_lib.ModeKeys.PREDICT):
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/estimator.pyc in _add_meta_graph_for_mode(self, builder, input_receiver_fn_map, checkpoint_path, save_variables, mode, export_tags, check_variables)
895 labels=getattr(input_receiver, 'labels', None),
896 mode=mode,
--> 897 config=self.config)
898
899 export_outputs = model_fn_lib.export_outputs_for_mode(
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/estimator.pyc in _call_model_fn(self, features, labels, mode, config)
1110
1111 logging.info('Calling model_fn.')
-> 1112 model_fn_results = self._model_fn(features=features, **kwargs)
1113 logging.info('Done calling model_fn.')
1114
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/keras.pyc in model_fn(features, labels, mode)
276
277 model = _clone_and_build_model(mode, keras_model, custom_objects, features,
--> 278 labels)
279 model_output_names = []
280 # We need to make sure that the output names of the last layer in the model
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/keras.pyc in _clone_and_build_model(mode, keras_model, custom_objects, features, labels)
184 K.set_learning_phase(mode == model_fn_lib.ModeKeys.TRAIN)
185 input_tensors, target_tensors = _convert_estimator_io_to_keras(
--> 186 keras_model, features, labels)
187
188 compile_clone = (mode != model_fn_lib.ModeKeys.PREDICT)
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/keras.pyc in _convert_estimator_io_to_keras(keras_model, features, labels)
157
158 input_tensors = _to_ordered_tensor_list(
--> 159 features, input_names, 'features', 'inputs')
160 target_tensors = _to_ordered_tensor_list(
161 labels, output_names, 'labels', 'outputs')
/usr/local/envs/py2env/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/keras.pyc in _to_ordered_tensor_list(obj, key_order, obj_name, order_name)
139 order_name=order_name, order_keys=set(key_order),
140 obj_name=obj_name, obj_keys=set(obj.keys()),
--> 141 different_keys=different_keys))
142
143 return [_convert_tensor(obj[key]) for key in key_order]
KeyError: "The dictionary passed into features does not have the expected inputs keys defined in the keras model.\n\tExpected keys: set([u'vgg16_input'])\n\tfeatures keys: set(['image', 'label'])\n\tDifference: set(['image', 'label', u'vgg16_input'])"
My questions are:
can the features be extracted with tfdv - tensorflow-data-validation? schema_utils?
can eval_input_receiver_1_fn
method be replaces with a method that uses dataset API:
def eval_input_receiver_fn():
validation_dataset = get_batched_dataset(validation_filenames)
return validation_dataset
Any help / reference is appreciated. Thanks, eilalan
Upvotes: 4
Views: 1016
Reputation: 245
Keras works a bit different than estimators (even when using model_to_estimator). There are a few things:
1) Keras requires input feature names match the input layer name
It appears that you did not define an InputLayer in your keras model so keras created a default one named after your first layer (e.g. vgg16 -> vgg16_input). Your incoming features use the name 'images'. You can either create an input layer with the name 'images' or rename the parsed feature key to 'vgg16_input'.
2) Unlike estimators, keras requires that you only pass features used by the model.
You are passing both 'labels' and 'images' as features, you need to pop the labels from the features dict.
All that said, TFMA does not yet have full support for TF 2.0. You might have better luck with running from head vs alpha, but it is still under development.
Upvotes: 3