Reputation: 183
I have two dataframes with different column names. I want to create a new dataframe whose column names are the concatenation of the two dataframes columns. The resulting number of rows will be all the possible combinations (n_rows choose 2) between rows of the two datasets.
df1 = pd.DataFrame({'A': ['1', '2']})
df2 = pd.DataFrame({'B': ['a', 'b', 'c']})
will generate
df3 = pd.DataFrame({'A': ['1', '1', '1', '2', '2', '2'],
'B': ['a', 'b', 'c', 'a', 'b', 'c']})
Upvotes: 1
Views: 496
Reputation: 150745
You can do so with pd.MultiIndex
:
(pd.DataFrame(index=pd.MultiIndex.from_product([df1['A'], df2['B']],
names=['A','B']))
.reset_index())
Output:
A B
0 1 a
1 1 b
2 1 c
3 2 a
4 2 b
5 2 c
Upvotes: 0
Reputation: 9546
The product()
function will do what you want:
pd.DataFrame(list(itertools.product(df1.A,df2.B)),columns=['A','B'])
Definition of product()
:
def product(*args, repeat=1):
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
Upvotes: 0
Reputation: 75080
Use itertools.product()
:
import itertools
pd.DataFrame(list(itertools.product(df1.A,df2.B)),columns=['A','B'])
A B
0 1 a
1 1 b
2 1 c
3 2 a
4 2 b
5 2 c
Upvotes: 3