Reputation: 755
I'm trying to apply a double for loop to solve a problem. Ideally I'll prefer not to use a for loop as it dataset I have is huge and it will take ages to run through the loop. Below is the code:
words_data_set = pandas.DataFrame({'keywords':['wlmart womens book set','microsoft fish sauce','books from walmat store','mens login for facebook fools','mens login for facbook fools','login for twetter boy','apples from cook']})
company_name_list = ['walmart','microsoft','facebook','twitter','amazon','apple']
import pandas
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import time
print(len(words_data_set),'....rows')
start_time = time.time()
fuzzed_data_final = pandas.DataFrame()
for s in words_data_set.keywords.tolist():
step1 = words_data_set[words_data_set.keywords == s]
step1['keywords2'] = step1.keywords.str.split()
step2 = step1.keywords2.values.tolist()
step3 = [item for sublist in step2 for item in sublist]
step3 = pandas.DataFrame(step3)
step3.columns = ['search_words']
step3['keywords'] = s
fuzzed_data = pandas.DataFrame()
for w in step3.search_words.tolist():
step4 = step3[step3.search_words == w]
step5 = pandas.DataFrame(process.extract(w,company_name_list))
step5.columns = ['w','score']
if step5.score.max() >= 90:
w = ''
else:
w
step4['search_words'] = w
fuzzed_data = fuzzed_data.append(step4)
fuzzed_data_final = fuzzed_data_final.append(fuzzed_data)
print("--- %s seconds ---" % (time.time() - start_time))
How can I optimize this for speed and efficiency. words_data_set in reality is about 1 million rows. company_name_list in reality is about 2,000 elements.
Upvotes: 0
Views: 183
Reputation: 692
Try not to create a new temporarily object with pandas when you can just use Python built-in functions. I don't know about the problem that you are trying to solve but if I just clean what looks to me as redundancy the code runs 9 times faster (0.045 vs 0.410 sec):
import pandas
from fuzzywuzzy import process
from operator import itemgetter
import time
words_data_set = pandas.DataFrame({
'keywords': ['wlmart womens book set',
'microsoft fish sauce',
'books from walmat store',
'mens login for facebook fools',
'mens login for facbook fools',
'login for twetter boy',
'apples from cook']})
company_name_list = [
'walmart', 'microsoft', 'facebook', 'twitter', 'amazon', 'apple']
print(len(words_data_set), '....rows')
start_time = time.time()
fuzzed_data_final = pandas.DataFrame()
for s in words_data_set.keywords.tolist():
step3 = pandas.DataFrame(s.split())
step3.columns = ['search_words']
step3['keywords'] = s
fuzzed_data = pandas.DataFrame()
for w in step3.search_words.tolist():
step4 = step3[step3.search_words == w]
if max(process.extract(w, company_name_list), key=itemgetter(1))[1] >= 90:
w = ''
default = pandas.options.mode.chained_assignment
pandas.options.mode.chained_assignment = None
step4['search_words'] = w
pandas.options.mode.chained_assignment = default
fuzzed_data = fuzzed_data.append(step4)
fuzzed_data_final = fuzzed_data_final.append(fuzzed_data)
print("--- %s seconds ---" % (time.time() - start_time))
print(fuzzed_data_final)
Output now:
7 ....rows
--- 0.04493832588195801 seconds ---
search_words keywords
0 wlmart womens book set
1 womens wlmart womens book set
2 wlmart womens book set
3 set wlmart womens book set
0 microsoft fish sauce
1 fish microsoft fish sauce
2 sauce microsoft fish sauce
0 books books from walmat store
1 from books from walmat store
2 books from walmat store
3 store books from walmat store
0 mens mens login for facebook fools
1 login mens login for facebook fools
2 for mens login for facebook fools
3 mens login for facebook fools
4 fools mens login for facebook fools
0 mens mens login for facbook fools
1 login mens login for facbook fools
2 for mens login for facbook fools
3 mens login for facbook fools
4 fools mens login for facbook fools
0 login login for twetter boy
1 for login for twetter boy
2 twetter login for twetter boy
3 boy login for twetter boy
0 apples from cook
1 from apples from cook
2 cook apples from cook
Process finished with exit code 0
Output before:
7 ....rows
/Users/alex/PycharmProjects/game/pandas_double_for_loop_original.py:18: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
step1['keywords2'] = step1.keywords.str.split()
/Users/alex/PycharmProjects/game/pandas_double_for_loop_original.py:36: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
step4['search_words'] = w
--- 0.4108889102935791 seconds ---
search_words keywords
0 wlmart womens book set
1 womens wlmart womens book set
2 wlmart womens book set
3 set wlmart womens book set
0 microsoft fish sauce
1 fish microsoft fish sauce
2 sauce microsoft fish sauce
0 books books from walmat store
1 from books from walmat store
2 books from walmat store
3 store books from walmat store
0 mens mens login for facebook fools
1 login mens login for facebook fools
2 for mens login for facebook fools
3 mens login for facebook fools
4 fools mens login for facebook fools
0 mens mens login for facbook fools
1 login mens login for facbook fools
2 for mens login for facbook fools
3 mens login for facbook fools
4 fools mens login for facbook fools
0 login login for twetter boy
1 for login for twetter boy
2 twetter login for twetter boy
3 boy login for twetter boy
0 apples from cook
1 from apples from cook
2 cook apples from cook
Process finished with exit code 0
UPDATE: the answer about double loop efficiency. Here is version 2 program:
import pandas
from fuzzywuzzy import process
import time
lines = [
'wlmart womens book set', 'microsoft fish sauce',
'books from walmat store', 'mens login for facebook fools',
'mens login for facbook fools', 'login for twetter boy',
'apples from cook'
]
companies = ['walmart', 'microsoft', 'facebook', 'twitter', 'amazon', 'apple']
fuzzed_data_final = pandas.DataFrame()
lines_results = []
def part0():
counter = 0
for line in lines:
for word in line.split():
counter += 1
print('Part 0. Count all words.\n', counter, 'words')
def part1():
for line in lines:
line_results = []
for word in line.split():
match_score_list = process.extractBests(
word, companies, score_cutoff=90, limit=1)
line_results.append(True if match_score_list else False)
lines_results.append(line_results)
print('Part 1. Match all words.\n', lines_results)
def part2():
global fuzzed_data_final
for i, line in enumerate(lines):
step3 = pandas.DataFrame(line.split())
step3.columns = ['search_words']
step3['keywords'] = line
fuzzed_data = pandas.DataFrame()
for j, word in enumerate(line.split()):
step4 = step3[step3.search_words == word]
w = word
if lines_results[i][j]:
w = ''
default = pandas.options.mode.chained_assignment
pandas.options.mode.chained_assignment = None
step4['search_words'] = w
pandas.options.mode.chained_assignment = default
fuzzed_data = fuzzed_data.append(step4)
fuzzed_data_final = fuzzed_data_final.append(fuzzed_data)
print('Part 2. Create pandas.DataFrame fuzzed_data_final.\n',
fuzzed_data_final)
def execute(f):
start_time = time.perf_counter()
f()
total_time = time.perf_counter() - start_time
print("--- %f seconds ---" % total_time)
rows = 1
names = 2000
e = total_time / len(lines) / len(companies) * rows * 1000000. * names
h = e / 3600
d = h / 24
print('Time estimation for %d million rows and %d company names: %d seconds or'
' %d hours or %d days'
% (rows, names, e, h, d))
execute(part0)
execute(part1)
execute(part2)
The output:
Part 0. Count all words.
28 words
--- 0.000032 seconds ---
Time estimation for 1 million rows and 2000 company names: 1534 seconds or 0 hours or 0 days
Part 1. Match all words.
[[True, False, True, False], [True, False, False], [False, False, True, False], [False, False, False, True, False], [False, False, False, True, False], [False, False, False, False], [True, False, False]]
--- 0.006723 seconds ---
Time estimation for 1 million rows and 2000 company names: 320165 seconds or 88 hours or 3 days
Part 2. Create pandas.DataFrame fuzzed_data_final.
search_words keywords
0 wlmart womens book set
1 womens wlmart womens book set
2 wlmart womens book set
3 set wlmart womens book set
0 microsoft fish sauce
1 fish microsoft fish sauce
2 sauce microsoft fish sauce
0 books books from walmat store
1 from books from walmat store
2 books from walmat store
3 store books from walmat store
0 mens mens login for facebook fools
1 login mens login for facebook fools
2 for mens login for facebook fools
3 mens login for facebook fools
4 fools mens login for facebook fools
0 mens mens login for facbook fools
1 login mens login for facbook fools
2 for mens login for facbook fools
3 mens login for facbook fools
4 fools mens login for facbook fools
0 login login for twetter boy
1 for login for twetter boy
2 twetter login for twetter boy
3 boy login for twetter boy
0 apples from cook
1 from apples from cook
2 cook apples from cook
--- 0.042164 seconds ---
Time estimation for 1 million rows and 2000 company names: 2007804 seconds or 557 hours or 23 days
Process finished with exit code 0
So, just reading 1 million lines and counting all words will take about a half-hour. 88 hours to fuzzy match all words and 23 days for the creation fuzzed_data_final with about 4,000,0000 rows. I will look if this can be optimized.
UPDATE #2: with optimization for the creation fuzzed_data_final
import pandas
from fuzzywuzzy import process
import time
lines = [
'wlmart womens book set', 'microsoft fish sauce',
'books from walmat store', 'mens login for facebook fools',
'mens login for facbook fools', 'login for twetter boy',
'apples from cook'
]
companies = ['walmart', 'microsoft', 'facebook', 'twitter', 'amazon', 'apple']
start_time = time.perf_counter()
keywords = []
search_words = []
for line in lines:
line_results = []
for word in line.split():
match_score_list = process.extractBests(
word, companies, score_cutoff=90, limit=1)
keywords.append(line)
search_words.append('' if match_score_list else word)
fuzzed_data_final = pandas.DataFrame(
{ 'search_words': pandas.Series(search_words),
'keywords': pandas.Series(keywords) })
total_time = time.perf_counter() - start_time
print("--- %f seconds ---" % total_time)
rows = 1
names = 2000
e = total_time / len(lines) / len(companies) * rows * 1000000. * names
h = e / 3600
d = h / 24
print('Time estimation for %d million rows and %d company names: %d seconds or'
' %d hours or %d days'
% (rows, names, e, h, d))
print(fuzzed_data_final)
The output:
/usr/local/bin/python3.7 /Users/alex/PycharmProjects/game/pandas_doble_for_loop_v3.py
--- 0.008402 seconds ---
Time estimation for 1 million rows and 2000 company names: 400107 seconds or 111 hours or 4 days
search_words keywords
0 wlmart womens book set
1 womens wlmart womens book set
2 wlmart womens book set
3 set wlmart womens book set
4 microsoft fish sauce
5 fish microsoft fish sauce
6 sauce microsoft fish sauce
7 books books from walmat store
8 from books from walmat store
9 books from walmat store
10 store books from walmat store
11 mens mens login for facebook fools
12 login mens login for facebook fools
13 for mens login for facebook fools
14 mens login for facebook fools
15 fools mens login for facebook fools
16 mens mens login for facbook fools
17 login mens login for facbook fools
18 for mens login for facbook fools
19 mens login for facbook fools
20 fools mens login for facbook fools
21 login login for twetter boy
22 for login for twetter boy
23 twetter login for twetter boy
24 boy login for twetter boy
25 apples from cook
26 from apples from cook
27 cook apples from cook
Process finished with exit code 0
47 times faster than the original version. I see one additional trick to improve the performance on 1,000,000 lines of text: use a dictionary for the matched word. Good vocabulary size is about 20,000 words. Each line could have about 10 words. So, 10,000,000/20,000 = 500 repetitions in average for each word.
UPDATE #3: added a dictionary for the matched words
import pandas
from fuzzywuzzy import process
import time
lines = [
'wlmart womens book set', 'microsoft fish sauce',
'books from walmat store', 'mens login for facebook fools',
'mens login for facbook fools', 'login for twetter boy',
'apples from cook'
]
companies = ['walmart', 'microsoft', 'facebook', 'twitter', 'amazon', 'apple']
start_time = time.perf_counter()
keywords = []
search_words = []
dictionary = {}
for line in lines:
for word in line.split():
if word in dictionary:
score = dictionary[word]
else:
match_score_list = process.extractBests(
word, companies, score_cutoff=90, limit=1)
score = True if match_score_list else False
dictionary[word] = True if match_score_list else False
keywords.append(line)
search_words.append('' if score else word)
fuzzed_data_final = pandas.DataFrame(
{'search_words': pandas.Series(search_words),
'keywords': pandas.Series(keywords)})
total_time = time.perf_counter() - start_time
print("--- %f seconds ---" % total_time)
rows = 1
names = 2000
e = total_time / len(lines) / len(companies) * rows * 1000000. * names
h = e / 3600
d = h / 24
print('Time estimation for %d million rows and %d company names: %d seconds or'
' %d hours or %d days' % (rows, names, e, h, d))
print(fuzzed_data_final)
The output:
/usr/local/bin/python3.7 /Users/alex/PycharmProjects/game/pandas_doble_for_loop_v4.py
--- 0.005707 seconds ---
Time estimation for 1 million rows and 2000 company names: 271761 seconds or 75 hours or 3 days
search_words keywords
0 wlmart womens book set
1 womens wlmart womens book set
2 wlmart womens book set
3 set wlmart womens book set
4 microsoft fish sauce
5 fish microsoft fish sauce
6 sauce microsoft fish sauce
7 books books from walmat store
8 from books from walmat store
9 books from walmat store
10 store books from walmat store
11 mens mens login for facebook fools
12 login mens login for facebook fools
13 for mens login for facebook fools
14 mens login for facebook fools
15 fools mens login for facebook fools
16 mens mens login for facbook fools
17 login mens login for facbook fools
18 for mens login for facbook fools
19 mens login for facbook fools
20 fools mens login for facbook fools
21 login login for twetter boy
22 for login for twetter boy
23 twetter login for twetter boy
24 boy login for twetter boy
25 apples from cook
26 from apples from cook
27 cook apples from cook
Process finished with exit code 0
It is 69 times faster than the original script. Can we make it 100?
Upvotes: 1