Reputation: 8247
I have following dataframe in pandas
code job_descr job_type
123 sales executive nan
124 data scientist nan
145 marketing manager nan
132 finance nan
144 data analyst nan
I want to classify job_descr
to job_type
as follows
sales : Sales
marketing : Marketing
finance : Finance
data science : Analytics
analyst : Analytics
I am doing following in pandas
def job_type_redifine(column_name):
if column_name.str.contains('sales'):
return 'Sales'
elif column_name.str.contains('marketing'):
return 'Marketing'
elif column_name.str.contains('data science|data scientist|analyst|machine learning'):
return 'Analytics'
else:
return 'Others'
final_df['job_type'] = final_df.apply(lambda row:
job_type_redifine(row['job_descr']), axis=1)
Desired dataframe
code job_descr job_type
123 sales executive Sales
124 data scientist Analytics
145 marketing manager Marketing
132 finance Finance
144 data analyst Analytics
Upvotes: 2
Views: 59
Reputation: 862611
First solution is with numpy.select
and Series.str.contains
, advatage is working with missing values, but is slowier:
m1 = final_df['job_descr'].str.contains('sales')
m2 = final_df['job_descr'].str.contains('marketing')
m3 = final_df['job_descr'].str.contains('data science|data scientist|analyst|machine learning')
final_df['job_type'] = np.select([m1, m2, m3],
['Sales','Marketing','Analytics'], default='Others')
print (final_df)
code job_descr job_type
0 123 sales executive Sales
1 124 data scientist Analytics
2 145 marketing manager Marketing
3 132 finance Others
4 144 data analyst Analytics
Solution with Series.apply
- for test matching values is use in
, here is loop by each value, but it is faster, because pandas text function are slow. Disadvatage is a bit complicated last condition with many or
:
def job_type_redifine(column_name):
if 'sales' in column_name:
return 'Sales'
elif 'marketing' in column_name:
return 'Marketing'
elif ('data science' in column_name or 'data scientist' in column_name
or 'analyst' in column_name or 'machine learning' in column_name):
return 'Analytics'
else:
return 'Others'
final_df['job_type'] = final_df['job_descr'].apply(job_type_redifine)
print (final_df)
code job_descr job_type
0 123 sales executive Sales
1 124 data scientist Analytics
2 145 marketing manager Marketing
3 132 finance Others
4 144 data analyst Analytics
Performance:
#[5000 rows x 3 columns]
final_df = pd.concat([final_df] * 1000, ignore_index=True)
In [13]: %%timeit
...: m1 = final_df['job_descr'].str.contains('sales')
...: m2 = final_df['job_descr'].str.contains('marketing')
...: m3 = final_df['job_descr'].str.contains('data science|data scientist|analyst|machine learning')
...:
...: final_df['job_type'] = np.select([m1, m2, m3], ['Sales','Marketing','Analytics'], default='Others')
...:
12.1 ms ± 611 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [14]: %%timeit
...: final_df['job_type1'] = final_df['job_descr'].apply(job_type_redifine)
...:
1.95 ms ± 57.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Upvotes: 1