Reputation: 141
Noob here.
Here's the dataset that I'm working on https://www.kaggle.com/arpitjain007/game-of-deep-learning-ship-datasets
and I'm using fastai, I've successfully built the model but I have no idea how to test it with 'test.csv' file.
Here's my code
from fastai import *
from fastai.vision import *
path = '../input/train'
path = Path(path)
path.ls()
df = pd.read_csv(path/'train.csv')
data = ImageDataBunch.from_df('../input/train/images', df, ds_tfms=get_transforms(), size=224, bs=64 ).normalize(imagenet_stats)
learn = cnn_learner(data, models.resnet50, metrics=accuracy, model_dir='/kaggle/working/models')
learn.fit_one_cycle(5)
df_test = pd.read_csv('../input/test_ApKoW4T.csv')
I don't know how to use the Test Dataframe to predict.
Upvotes: 3
Views: 4342
Reputation: 141
All i had to do was create an Image List
train = ImageList.from_df(df,'../input/train/images')
test = ImageList.from_df(df_test, '../input/train/images')
then create ImageDataBunch
data = ImageDataBunch.from_df('../input/train/images', df,
ds_tfms=get_transforms(), size=224, bs=64 ).normalize(imagenet_stats)
then add test
data.add_test(test)
and then predict using
predictions, *_ = learn.get_preds(DatasetType.Test)
labels = np.argmax(predictions, 1)
df_test['category'] = labels
Upvotes: 9
Reputation: 31361
Check out this kernel https://www.kaggle.com/matejthetree/digit-recognizer-fast-ai-customimagelist?scriptVersionId=14597759
when initializing data you add test bunch to it
data = (CustomImageList.from_csv_custom(path=path, csv_name='train.csv', imgIdx=1)
.split_by_rand_pct(.2)
.label_from_df(cols='label')
.add_test(test, label=0)
.transform(tfms)
.databunch(bs=128, num_workers=0)
.normalize(imagenet_stats))
later you get predictions
predictions, *_ = learn.get_preds(DatasetType.Test)
labels = np.argmax(predictions, 1)
# output to a file
submission_df = pd.DataFrame({'ImageId': list(range(1,len(labels)+1)), 'Label': labels})
submission_df.to_csv(f'submission.csv', index=False)
Upvotes: 1