Reputation: 987
(I think) I know about the twiny/x function in matplotlib, but I am really struggling to figure out how to use this function in a subplot context. I have a line plot like this showing rainfall data:
Generated by this code:
fig,ax = plt.subplots(3, figsize=(10,15),sharey=True)
ax[0].plot(YEAR1['pcp_1D_tot'], label='RG')
ax[0].plot(YEAR1['ppt_1D'], label='TRMM')
ax[0].set_title('Year 1',x=0.1,y=0.9)
ax[1].plot(YEAR2['pcp_1D_tot'], label='RG')
ax[1].plot(YEAR2['ppt_1D'], label='TRMM')
ax[1].set_title('Year 2',x=0.1,y=0.9)
ax[1].set_ylabel('Rainfall total (mm/day)')
ax[2].plot(YEAR3['pcp_1D_tot'], label='RG')
ax[2].plot(YEAR3['ppt_1D'], label='TRMM')
ax[2].set_title('Year 3',x=0.1,y=0.9)
ax[2].set_xlabel('Date')
fig.legend(loc=(0.8,0.9))
fig.tight_layout()
plt.show()
But I also have data on flood magnitude I would like to add which is in categories of 1, 2, and 3, stored in a column named, e.g.
YEAR1['Size']
I'd like to plot these as a scatter plot on top of the line plot to show their incidence relative to rainfall, and so I believe I need to add another y axis on the right, but I am very unclear how to do this.
Can anyone help?
**###########UPDATE############### **
Thanks to the contributions below, I managed to make the following, which is exactly what I was hoping for:
By using the following code:
x = YEAR1m.index #### these are referring to other data that has been filtered
y = YEAR2m.index
z = YEAR3m.index
fig,ax = plt.subplots(3, figsize=(10,15),sharey=True)
ax[0].plot(YEAR1['pcp_1D_tot'], label='RG')
ax[0].plot(YEAR1['ppt_1D'], label='TRMM')
ax[0].set_title('Year 1',x=0.1,y=0.9)
ax0 = ax[0].twinx()
ax0.scatter(x, YEAR1m['Size'], marker='*', color='r',s=100)
ax0.set_ylim([0,3.2])
ax0.set_yticklabels(['0',' ','1',' ','2',' ','3'])
ax[1].plot(YEAR2['pcp_1D_tot'], label='RG')
ax[1].plot(YEAR2['ppt_1D'], label='TRMM')
ax[1].set_title('Year 2',x=0.1,y=0.9)
ax[1].set_ylabel('Rainfall total (mm/day)')
ax1 = ax[1].twinx()
ax1.scatter(y, YEAR2m['Size'], marker='*', color='r',s=100)
ax1.set_ylim([0,3.2])
ax1.set_yticklabels(['0',' ','1',' ','2',' ','3'])
ax[2].plot(YEAR3['pcp_1D_tot'], label='RG')
ax[2].plot(YEAR3['ppt_1D'], label='TRMM')
ax[2].set_title('Year 3',x=0.1,y=0.9)
ax[2].set_xlabel('Date')
ax2 = ax[2].twinx()
ax2.scatter(z, YEAR3m['Size'], marker='*', color='r',s=100)
ax2.set_ylim([0,3.2])
ax2.set_yticklabels(['0',' ','1',' ','2',' ','3'])
# fig.legend(loc=(0.8,0.9))
fig.tight_layout()
plt.show()
Upvotes: 6
Views: 14499
Reputation: 25023
I have not your data, let's see if I understood your problem...
Usual stuff,
import matplotlib.pyplot as plt
import numpy as np
Generate some data
x = np.linspace(0, 1.57, 21)
y = np.sin(x)
z = 4*np.random.random(21)
Prepare the figure with two subplots — I'm going to use only the first one to avoid have you bored — add a parasitic axes not to the current plot but to a specific axes
fig, (ax0, ax1) = plt.subplots(2, 1)
ax01 = ax0.twinx()
Plot the curve(s), plot the scatter points using different colors (this is not dealt with automatically)
ax0.plot(x, y, color='blue')
ax01.scatter(x, z, color='red')
This is a bit of an unrequested final touch... (note, it's colors
, not color
)
ax0.tick_params(axis='y', colors='blue')
ax01.tick_params(axis='y', colors='red')
and finally plt.show()
gives us
I'd like to add: thank you Rutger Kassies for your fine answer, where the reader of my answer can find further advice on customizing all the details of the two vertical spines.
Upvotes: 2
Reputation: 39052
In the absence of data, I can only provide a guess solution. The following should work. You will have to use individual subplot object to create a secondary y-axis using twinx
fig,ax = plt.subplots(3, figsize=(10,15),sharey=True)
ax[0].plot(YEAR1['pcp_1D_tot'], label='RG')
ax[0].plot(YEAR1['ppt_1D'], label='TRMM')
ax[0].set_title('Year 1',x=0.1,y=0.9)
ax0 = ax[0].twinx()
ax0.plot(YEAR1['Size'])
ax[1].plot(YEAR2['pcp_1D_tot'], label='RG')
ax[1].plot(YEAR2['ppt_1D'], label='TRMM')
ax[1].set_title('Year 2',x=0.1,y=0.9)
ax[1].set_ylabel('Rainfall total (mm/day)')
ax1 = ax[1].twinx()
ax1.plot(YEAR2['Size'])
ax[2].plot(YEAR3['pcp_1D_tot'], label='RG')
ax[2].plot(YEAR3['ppt_1D'], label='TRMM')
ax[2].set_title('Year 3',x=0.1,y=0.9)
ax[2].set_xlabel('Date')
ax2 = ax[2].twinx()
ax2.plot(YEAR3['Size'])
Upvotes: 4