Reputation: 1287
I have two vertices of a triangle and the lengths are unequal. How to find the third vertex?
Upvotes: 1
Views: 1115
Reputation:
Translate all points so that P2 becomes the origin.
Then you solve
x² + y² = d2²
(x - x3)² + (y - y3)² = d3²
(mind the renumbering of d1
).
By subtraction of the two equations,
(2x - x3).x3 + (2y - y3).y3 = d2² - d3²
which is a linear equation, of the form
a.x + b.y + c = 0
and in parametric form
x = x0 + b.t
y = y0 - a.t
where (x0, y0)
is an arbitrary solution, for instance (- ac / (a² + b²), - bc / (a² + b²))
.
Now solve the quadratic equation in t
(x0 + b.t)² + (y0 - a.t)² = d2²
which gives two solutions, and undo the initial translation.
Upvotes: 1
Reputation: 1914
function [vertex_1a, vertex_1b] = third_vertex(x2, y2, x3, y3, d1, d3)
d2 = sqrt((x3 - x2)^2 + (y3 - y2)^2); % distance between vertex 2 and 3
% Orthogonal projection of side 12 onto side 23, calculated unsing
% the Law of cosines:
k = (d2^2 + d1^2 - d3^2) / (2*d2);
% height from vertex 1 to side 23 calculated by Pythagoras' theorem:
h = sqrt(d1^2 - k^2);
% calculating the output: the coordinates of vertex 1, there are two solutions:
vertex_1a(1) = x2 + (k/d2)*(x3 - x2) - (h/d2)*(y3 - y2);
vertex_1a(2) = y2 + (k/d2)*(y3 - y2) + (h/d2)*(x3 - x2);
vertex_1b(1) = x2 + (k/d2)*(x3 - x2) + (h/d2)*(y3 - y2);
vertex_1b(2) = y2 + (k/d2)*(y3 - y2) - (h/d2)*(x3 - x2);
end
Upvotes: 0