Reputation: 3728
Im trying to loop over my columns and act differently if the column is category than if its something else.
Using the following method works for a series that is category but give an error when checking a series with object
dtype.
if series.dtype == 'category':
# do something
Works on category, but if the dtype is object
throws:
Error:
Traceback (most recent call last):
File "", line 382, in trace_task
R = retval = fun(*args, **kwargs)
File "", line 54, in run_data_template_task
data_template.run(data_bundle, columns=columns)
File "", line 531, in run
self.to_parquet(data_bundle, columns=columns)
File "", line 195, in to_parquet
df = self.parse_df(df, columns=columns, overwrite_columns=overwrite_columns)
File "", line 378, in parse_df
df[col.name] = parse_series_with_nans(df[col.name], 'str')
File "", line 369, in parse_series_with_nans
if series.dtype == 'category':
TypeError: data type "category" not understood
On the other hand, Using:
if series.dtype is 'category':
# do something
returns False
even when the dtype is a category
(which makes sense because its obviously not the same object)
a reproduce-able example:
df = pd.DataFrame({'category_column': ['a', 'b', 'c'], 'other_column': [1, 2, 3]})
df['category_column'] = df['category_column'].astype('category')
df['category_column'].dtype is 'category'
Out[46]: False
df['category_column'].dtype == 'category'
Out[47]: True
df['other_column'].dtype == 'category'
Traceback (most recent call last):
File "", line 3296, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-48-c6cc61c458d0>", line 1, in <module>
d['other_column'].dtype == 'category'
TypeError: data type "category" not understood
Upvotes: 4
Views: 1378
Reputation: 149075
In fact the dtype
of a Series is a complex object, and comparing it to a string may or not give expected results. Just look with your examples:
>>> print(repr(df.category_column.dtype))
CategoricalDtype(categories=['a', 'b', 'c'], ordered=False)
>>> print(repr(df.other_column.dtype))
dtype('int64')
That is enough to make sure that they are not string values!
If you need to to simple comparisons, you should use their name
attribute which is indeed a string:
>>> df['category_column'].dtype.name == 'category'
True
>>> df['other_column'].dtype.name == 'category'
False
Upvotes: 3
Reputation: 29387
df['category_column'].dtype is 'category'
is false because the two objects are not the same object.
On the other hand,
df['category_column'].dtype == 'category'
because
All instances of CategoricalDtype compare equal to the string 'category'.
(https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#equality-semantics)
See also Understanding Python's "is" operator
Upvotes: 2