rusty81
rusty81

Reputation: 53

Writing device library C/C++ for STM32 or ARM

I need to develop device libraries like uBlox, IMUs, BLE, ecc.. from scratch (almost). Is there any doc or tutorial that can help me? Question is, how to write a device library using C/C++ (Arduino style if you want) given a datasheet and a platform like STM32 or other ARMs?

Thanks so much

I've tried to read device libraries from Arduino library and various Github, but I would like to have a guide/template to follow (general rules) to write proper device libraries from a given datasheet.

I'm not asking a full definitive guide, just where to start, docs, methods approach.

I've found this one below, but is very basic and quite lite for my targets.

http://blog.atollic.com/device-driver-development-the-ultimate-guide-for-embedded-system-developers

Upvotes: 1

Views: 3480

Answers (2)

Ajay Rajan
Ajay Rajan

Reputation: 31

I assume you will be using a cross toolchain on some platform like Linux, and that the cross toolchain is compatible with some method to load object code on the target CPU. I also assume that you already have a working STM32 board that is documented well enough to figure out how the sensors will connect to the board or to the CPU.

First, you should define what your library is supposed to provide. This part is usually surprisingly difficult. It’s a bit hard to know what it can provide, without knowing a bit about what the hardware sensors are capable of providing. Some iteration on the requirements is expected.

You will need to have access to the documentation for the sensors, usually in the form of the manufacturer’s data sheets. Using the datasheet, and knowing how the device is connected to the target CPU/board, you will need to access the STM32 peripherals that comprise the interface to the sensors. Back to the datasheets, this time for the STM32, to see how to access its peripheral interfaces. That might be simple GPIO bits and bytes, or might be how to use built-in peripherals such as SPI or I2C.

The datasheets for the sensors will detail a bunch of registers, describing the meaning of each, including the meanings of each bit, or group of bits, in certain registers. You will write code in C that accesses the STM32 peripherals, and those peripherals will access the sensors across the electrical interface that is part of the STM32 board.

The workflow usually starts out by writing to a register or three to see if there is some identifiable effect. For example, if you are exercising a digital IO port, you might wire up an LED to see if you can turn it on or off, or a switch to see if you can correctly read its state. This establishes that your code can poke or peek at IO using register level access. There may be existing helper functions to do this work as part of the cross toolchain. Or you might have to develop your own, using pointer indirection to access memory mapped IO. Or there might be specially instructions needed that can only be accessed from inline assembler code. This answer is generic as I don’t know the specifics of the STM32 processor or its typical ecosystem.

Then you move on to more complex operations that might involve sequences of operations, like cycling a bit or two to effect some communication with the device. Or it might be as simple as finding the proper sequence of registers to access for operation of a SPI interface. Often, you will find small chunks of code are complete enough to be re-used by your driver; like how to read or write an individual byte. You can then make that a reusable function to simplify the rest of the work, like accessing certain registers in sequence and printing the contents of register that you read to see if they make sense. Ultimately, you will have two important pieces of information: and understanding of the low-level register accesses needed to create a formal driver, and an understanding of what components and capabilities make up the hardware (ie, you know how the device(s) work).

Now, throw away most of what you’ve done, and develop a formal spec. Use what you now know to include everything that can be useful. Use what you now know to develop a spec that includes an appropriate interface API that your application code can use. Rewrite the driver, armed with the knowledge of how are the pieces work, and taking advantage of the blank canvas afforded you by the fresh rewrite of the spec. Only reuse code that you are completely confident is optimal and appropriate to the format dictated by the spec. Write test code for all of the modules, and use the test code to actually test that the code works and that it conforms to the spec. Re-use the test code every time you modify anything it tests.

Upvotes: 1

Tagli
Tagli

Reputation: 2592

I don't think that you can actually write libraries for STM32 in Arduino style. Most Arduino libraries you can find in the wild promote ease of usage rather than performance. For example, a simple library designed for a specific sensor works well if reading the sensor and reporting the results via serial port is the only thing that firmware must do. When you work on more complex projects where uC has lots to do and satisfy some real time constraints, the general Arduino approach doesn't solve your problems.

The problem with STM32 library development is the complex connection between peripherals, DMA and interrupts. I code them in register level without using the Cube framework and I often find myself digging the reference manual for tables that shows the connections between DMA channels or things like timer master-slave relations. Some peripherals (timers mostly) work similar but each one of them has small differences. It makes development of a hardware library that fits all scenarios practically impossible.

The tasks you need to accomplish are also more complex in STM32 projects. For example, in one of my projects, I fool SPI with a dummy/fake DMA transfer triggered by a timer, so that it can generate periodic 8-pulse trains from its clock pin (data pins are unused). No library can provide you this kind of flexibility.

Still, I believe not all is lost. I think it may be possible to build an hardware abstraction layer (HAL, but not The HAL by ST). So, it's possible to create useful libraries if you can abstract them from the hardware. A USB library can be a good example for this approach, as the STM32 devices have ~3 different USB peripheral hardware variations and it makes sense to write a separate HAL for each one of them. The upper application layer however can be the same.

Maybe that was the reason why ST created Cube framework. But as you know, Cube relies on external code generation tools which are aware of the hardware of each device. So, some of the work can be avoided in runtime. You can't achieve the same result when you write your own libraries unless you also design a similar external code generation tool. And also, the code Cube generates is bloated in most cases. You trade development time for runtime performance and code space.

Upvotes: 1

Related Questions