Tania Carvalho
Tania Carvalho

Reputation: 33

Operations with dates pyspark

For each delivery date I want to check if there was another delivery or call in the following 7 days!

This is what I have:

+------+----------+----------+----------+------+
|id    |delivery  |call      |n_delivery|n_call|
+------+----------+----------+----------+------+
|a     |2018-10-19|null      |1         |0     |
|a     |2018-10-31|null      |1         |0     |
|a     |null      |2018-10-29|0         |1     |
|a     |2018-10-31|null      |1         |0     |
|a     |null      |2018-10-30|0         |1     |
|a     |2018-10-12|null      |1         |0     |
+------+----------+----------+----------+------+

And this is what I want:

+------+----------+----------+----------+------+------+
|id    |delivery  |call      |n_delivery|n_call|target|
+------+----------+----------+----------+------+------+
|a     |2018-10-19|null      |1         |0     |0     |
|a     |2018-10-31|null      |1         |0     |0     |
|a     |null      |2018-10-29|0         |1     |0     |
|a     |2018-10-31|null      |1         |0     |0     |
|a     |null      |2018-10-30|0         |1     |0     |
|a     |2018-10-12|null      |1         |0     |1     |
+------+----------+----------+----------+------+------+

I using the window function but i really don't know how to use it.

days = lambda i: i * 86400 

w1 = Window().partitionBy("id").orderBy(col('delivery').cast("timestamp").cast("long")).rangeBetween(0,days(7))

w2 = Window().partitionBy("id").orderBy(col('call').cast("timestamp").cast("long")).rangeBetween(0,days(7))

I tried count the n_delivery and n_call and after construct the target based on new cols! But the result isn't correct.

dt1.select(col("*"), f.count('n_delivery').over(w1).alias('n_range_del'), f.count('n_call').over(w2).alias('n_range_call'))

Can anyone help me please? Thank you!

Upvotes: 1

Views: 90

Answers (1)

the-ucalegon
the-ucalegon

Reputation: 117

Using rangeBetween is possible but perhaps not as straight forward as using a simpler WindowSpec and creating a couple intermediate data columns.

Here's the solution that I came up with that seems to work:

"""
+------+----------+----------+----------+------+
|id    |delivery  |call      |n_delivery|n_call|
+------+----------+----------+----------+------+
|a     |2018-10-19|null      |1         |0     |
|a     |2018-10-31|null      |1         |0     |
|a     |null      |2018-10-29|0         |1     |
|a     |2018-10-31|null      |1         |0     |
|a     |null      |2018-10-30|0         |1     |
|a     |2018-10-12|null      |1         |0     |
+------+----------+----------+----------+------+
"""
# Create Data Frame with Example Data
data = [[1,2,3,4,5,6], ['a','a','a','a','a','a'], ['2018-10-19', '2018-10-31', '', '2018-10-31', '', '2018-10-12'], ['', '', '2018-10-29', '', '2018-10-30', ''], [1,1,0,1,0,1], [0,0,1,0,1,0]]
cols = ['row_num', 'id', 'delivery', 'call', 'n_delivery', 'n_call']
df_pd = pd.DataFrame(data).T
df_pd.columns = cols
df = spark.createDataFrame(df_pd)

# Convert Date Cols to Date Type
df = df.withColumn('delivery', F.to_timestamp(F.col('delivery'), 'yyyy-MM-dd').cast(T.DateType()))
df = df.withColumn('call', F.to_timestamp(F.col('call'), 'yyyy-MM-dd').cast(T.DateType()))

# Get coalesced column of delivery | call. 
# This logic will work as long as each row has *either* a call xor delivery date or if it has both and they're the same
df = df.withColumn('delivery_or_call', F.coalesce(df['delivery'], df['call']))

# Create window function to get *next* delivery or call date for every delivery row
w_delivery_or_call = Window().partitionBy('id').orderBy(F.col('delivery_or_call').asc()) 
df = df.withColumn('next_delivery_or_call', F.when(F.col('n_delivery') + F.col('n_call') > 0, F.lag(F.col('delivery_or_call'), count=-1).over(w_delivery_or_call)).otherwise(None))

# Calc target
df = df.withColumn('target', F.when((F.datediff(F.col('next_delivery_or_call'), F.col('delivery')) > 0) & (F.datediff(F.col('next_delivery_or_call'), F.col('delivery')) <= 7), 1).otherwise(0))

df.orderBy('row_num').show()

which yields the desired target:

+-------+---+----------+----------+----------+------+----------------+------------------------------------+------+ 
|row_num| id| delivery |call      |n_delivery|n_call|delivery_or_call|next_delivery_or_call_given_delivery|target| 
+-------+---+----------+----------+----------+------+----------------+------------------------------------+------+ 
| 6     | a |2018-10-12|      null|         1|     0|      2018-10-12|                          2018-10-19|     1| 
| 1     | a |2018-10-19|      null|         1|     0|      2018-10-19|                          2018-10-29|     0| 
| 3     | a |      null|2018-10-29|         0|     1|      2018-10-29|                                null|     0| 
| 5     | a |      null|2018-10-30|         0|     1|      2018-10-30|                                null|     0| 
| 4     | a |2018-10-31|      null|         1|     0|      2018-10-31|                          2018-10-31|     0| 
| 2     | a |2018-10-31|      null|         1|     0|      2018-10-31|                                null|     0| 
+-------+---+----------+----------+----------+------+----------------+------------------------------------+------+

Upvotes: 2

Related Questions