Reputation: 6501
I define a simple sequential model as follows:
m = tf.keras.models.Sequential([
tf.keras.layers.Dense(10, input_shape=(3,), name='fc1', activation='relu'),
tf.keras.layers.Dense(3, input_shape=(3,), name='fc2'),
])
m.summary()
Model: "sequential_6"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
fc1 (Dense) (None, 10) 40
_________________________________________________________________
fc2 (Dense) (None, 3) 33
=================================================================
Total params: 73
Trainable params: 73
Non-trainable params: 0
_________________________________________________________________
Now, I get a hidden layer layer_fc1
as follows:
layer_fc1 = m.get_layer('fc1')
layer_fc1
<tensorflow.python.keras.layers.core.Dense at 0x7f6fcc7d9eb8>
Now, i want tosee when I evaluate this model, I want to see the values of the layer fc1
.
The evaluation of the entire network and layer_fc1
in separate forward-calls is as follows:
t = tf.random.uniform((1, 3))
m(t)
<tf.Tensor: id=446892, shape=(1, 3), dtype=float32, numpy=array([[ 0.0168661 , -0.12582873, -0.0308626 ]], dtype=float32)>
layer_fc1(t)
<tf.Tensor: id=446904, shape=(1, 10), dtype=float32, numpy=
array([[0. , 0. , 0.00877494, 0.05680769, 0.08027849,
0.12362152, 0. , 0. , 0.22683921, 0.17538759]],
dtype=float32)>
So, is there any way that with a single forward call with m(t)
, I also get the values at that hidden layer? This way, the computations will be more efficient.
Upvotes: 1
Views: 458
Reputation: 14515
You can do this easily using the functional API as follows:
inpt = tf.keras.layers.Input(shape=(3,))
fc1_out = tf.keras.layers.Dense(10, name='fc1', activation='relu')(inpt)
fc2_out = tf.keras.layers.Dense(3, name='fc2')(fc1_out)
m = tf.keras.models.Model(inputs=inpt, outputs=[fc2_out, fc1_out])
t = tf.random.uniform((1,3))
m(t)
which gives the output you are looking for:
[<tf.Tensor: id=149, shape=(1, 3), dtype=float32, numpy=array([[-0.20491418, -0.33935153, 0.07777037]], dtype=float32)>,
<tf.Tensor: id=145, shape=(1, 10), dtype=float32, numpy=
array([[0. , 0.5071918 , 0. , 0.24756521, 0.05489198,
0.31997102, 0. , 0.23788954, 0.01050918, 0.24083027]],
dtype=float32)>]
I'm less familiar with the Sequential API but I'd expect this to be impossible in the Sequential API because, to me, this is NOT a sequential model where one layer follows the other from input to output.
Upvotes: 1