Reputation: 623
Suppose I have a DataFrame that looks like this:
import pandas as pd
df = pd.DataFrame({'x': [1,2,3], 'f': [lambda x: x + 1,
lambda x: x ** 2,
lambda x: x / 5]})
I'd like to apply 'f' to each 'x' into a new column 'y'. The way I do it now is using apply, but this is a bit slow. Is there a better way? Is storing lambdas in DataFrames a bad idea?
df['y'] = df.apply(lambda row: row['f'](row['x']), axis=1)
Upvotes: 3
Views: 52
Reputation: 863761
Is storing lambdas in DataFrames a bad idea?
I think yes, because pandas working efficient with scalars only.
If use loop in list comprehension, it is faster:
df = pd.DataFrame({'x': [1,2,3], 'f': [lambda x: x + 1,
lambda x: x ** 2,
lambda x: x / 5]})
#3k rows
df = pd.concat([df] * 1000, ignore_index=True)
In [97]: %timeit df['y'] = df.apply(lambda row: row['f'](row['x']), axis=1)
104 ms ± 3.83 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [98]: %timeit df['y1'] = [f(x) for f, x in zip(df['f'], df['x'])]
3 ms ± 93 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
#300k
df = pd.concat([df] * 100000, ignore_index=True)
In [102]: %timeit df['y'] = df.apply(lambda row: row['f'](row['x']), axis=1)
10.3 s ± 315 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [103]: %timeit df['y1'] = [f(x) for f, x in zip(df['f'], df['x'])]
318 ms ± 4.64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Upvotes: 2