Reputation: 79
I'm trying to train a GAN to colorize images. For that, I'm using ImageFolder
of torchvision
to load grayscale images but I also need the original data alongwith the transformed ones.
I want it in the fastest way as the data is large. I want to make ImageFolder
load both at the same time to reduce the time complexity.
def load_data_bw(opt):
datapath = '/content/gdrive/My Drive/faces/2003'
dataset = torchvision.datasets.ImageFolder(datapath,
transform=transforms.Compose([
transforms.Grayscale(num_output_channels=3), #load images as grayscale with three channels
transforms.RandomChoice(
[transforms.Resize(opt['loadSize'], interpolation=1),
transforms.Resize(opt['loadSize'], interpolation=2),
transforms.Resize(opt['loadSize'], interpolation=3),
transforms.Resize((opt['loadSize'], opt['loadSize']),
interpolation=1),
transforms.Resize((opt['loadSize'], opt['loadSize']),
interpolation=2),
transforms.Resize((opt['loadSize'], opt['loadSize']),
interpolation=3)]
),
transforms.RandomChoice(
[transforms.RandomResizedCrop(opt['fineSize'], interpolation=1),
transforms.RandomResizedCrop(opt['fineSize'], interpolation=2),
transforms.RandomResizedCrop(opt['fineSize'], interpolation=3)]
),
transforms.ColorJitter(brightness=0.1, contrast=0.1),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
]))
return dataset
I'm expecting to get:
for iteration, orig_data, gray_data in enumerate(training_data_loader, 1):
# code..
Upvotes: 1
Views: 1460
Reputation: 2200
I assume you have 2 dataset variables i.e. dataset_bw
and dataset_color
that you can load as you mention using ImageFolder
. Then you could do the following :
class GAN_dataset(Dataset):
def __init__(self, dataset_bw, dataset_color):
self.dataset1 = dataset_bw
self.dataset2 = dataset_color
def __getitem__(self, index):
x1 = self.dataset1[index]
x2 = self.dataset2[index]
return x1, x2
def __len__(self):
return len(self.dataset1)
dataset = GAN_dataset(dataset_bw, dataset_color)
loader = DataLoader(dataset, batch_size = ...)
This way you when you iterate through loader
, you will get two images as you require.
Upvotes: 3