Reputation: 25
I am trying to implement self attention in Pytorch. I need to calculate the following expressions.
Similarity function S (2 dimensional), P(2 dimensional), C'
S[i][j] = W1 * inp[i] + W2 * inp[j] + W3 * x1[i] * inp[j]
P[i][j] = e^(S[i][j]) / Sum for all j( e ^ (S[i]))
basically, P is a softmax function
C'[i] = Sum (for all j) P[i][j] * x1[j]
I tried the following code using for loops
for i in range(self.dim):
for j in range(self.dim):
S[i][j] = self.W1 * x1[i] + self.W2 * x1[j] + self.W3 * x1[i] * x1[j]
for i in range(self.dim):
for j in range(self.dim):
P[i][j] = torch.exp(S[i][j]) / torch.sum( torch.exp(S[i]))
# attend
for i in range(self.dim):
out[i] = 0
for j in range(self.dim):
out[i] += P[i][j] * x1[j]
Is there any faster way to implement this in Pytorch?
Upvotes: 0
Views: 1491
Reputation: 349
Here is an example of Self Attention I had implemented in Dual Attention for HSI Imagery
class PAM_Module(Module):
""" Position attention module https://github.com/junfu1115/DANet/blob/master/encoding/nn/attention.py"""
#Ref from SAGAN
def __init__(self, in_dim):
super(PAM_Module, self).__init__()
self.chanel_in = in_dim
self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = Parameter(torch.zeros(1))
self.softmax = Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X H X W)
returns :
out : attention value + input feature
attention: B X (HxW) X (HxW)
"""
m_batchsize, C, height, width = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width*height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(m_batchsize, -1, width*height)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(m_batchsize, -1, width*height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, height, width)
out = self.gamma*out + x
#out = F.avg_pool2d(out, out.size()[2:4])
return out
Upvotes: 1