Reputation: 4807
I have a very large multi index dataframe with about 500 columns and each column has 2 sub columns.
The dataframe df
looks as:
B2 B5 B3
bkt A1 A2 A2 A1 Z2 C1
Date
2019-06-11 0.8 0.2 -6.0 -0.8 -4.1 -0.6
2019-06-12 0.8 0.2 -6.9 -1.6 -5.3 -1.2
df.columns
MultiIndex(levels=[['B2', 'B5', 'B3', .....], ['A1', 'A2' ......]],
labels=[[1, 1, ....], [1, 0, ....]],
names=[None, 'bkt'])
I am trying to sort only the column names and keep the values as it is within each column to get the following desired output:
B2 B3 B5
bkt A1 A2 C1 Z2 A1 A2
Date
2019-06-11 ..
2019-06-12 ..
..
represents the values from the original dataframe. I just didn't retype them.
df = pd.DataFrame([
[.8, .2, -6., -.8, -4.1, -.6],
[.8, .2, -6.9, -1.6, -5.3, -1.2]
],
pd.date_range('2019-06-11', periods=2, name='Date'),
pd.MultiIndex.from_arrays([
'B2 B2 B5 B5 B3 B3'.split(),
'A1 A2 A2 A1 Z2 C1'.split()
], names=[None, 'bkt'])
)
Upvotes: 10
Views: 11742
Reputation: 61
This should be done using sort_index
to move both the column names and data:
df.sort_index(axis=1, level=[0, 1], ascending=[True, False], inplace=True)
Upvotes: 6
Reputation: 323226
Using sort_index
and assign it back
df.columns=df.sort_index(axis=1,level=[0,1],ascending=[True,False]).columns
And from piR , we do not need create the copy of df, just do modification with the columns
df.columns=df.columns.sort_values(ascending=[True, False])
Upvotes: 13