Raul Escalona
Raul Escalona

Reputation: 117

Sklearn - NLTK problems predicting

I'm new to machine learning and I'm doing my "hello world" using sklearn and nltk, but I have problems with the result of the prediction, it always throws me a single value.

I am following a tutorial that I obtained, that has errors and I have been modifying it little by little until in the end it gave me the result, but it is not the expected one.

Attach the tutorial link: https://towardsdatascience.com/text-classification-using-k-nearest-neighbors-46fa8a77acc5

I attach my current code: (always show: "Conditions" as final result)

import re

import nltk
from nltk.corpus import wordnet as wn
from nltk.corpus import genesis
nltk.download('genesis')
nltk.download('wordnet')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
genesis_ic = wn.ic(genesis, False, 0.0)

import numpy as np
import pandas as pd
from nltk.tokenize import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import SnowballStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.corpus import stopwords
from sklearn.metrics import roc_auc_score

from nltk.stem.wordnet import WordNetLemmatizer

class KNN_NLC_Classifer():
    def __init__(self, k=1, distance_type = 'path'):
        self.k = k
        self.distance_type = distance_type

    # This function is used for training
    def fit(self, x_train, y_train):
        self.x_train = x_train
        self.y_train = y_train

    # This function runs the K(1) nearest neighbour algorithm and
    # returns the label with closest match. 
    def predict(self, x_test):
        self.x_test = x_test
        y_predict = []

        for i in range(len(x_test)):
            max_sim = 0
            max_index = 0
            for j in range(self.x_train.shape[0]):
                temp = self.document_similarity(x_test[i], self.x_train[j])
                if temp > max_sim:
                    max_sim = temp
                    max_index = j
            y_predict.append(self.y_train[max_index])
        return y_predict

    def convert_tag(self, tag):
        """Convert the tag given by nltk.pos_tag to the tag used by wordnet.synsets"""
        tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'}
        try:
            return tag_dict[tag[0]]
        except KeyError:
            return None

    def doc_to_synsets(self, doc):
        """
            Returns a list of synsets in document.
            Tokenizes and tags the words in the document doc.
            Then finds the first synset for each word/tag combination.
        If a synset is not found for that combination it is skipped.

        Args:
            doc: string to be converted

        Returns:
            list of synsets
        """
        tokens = word_tokenize(str(doc)+' ')

        l = []
        tags = nltk.pos_tag([tokens[0] + ' ']) if len(tokens) == 1 else nltk.pos_tag(tokens)

        for token, tag in zip(tokens, tags):
            syntag = self.convert_tag(tag[1])
            syns = wn.synsets(token, syntag)
            if (len(syns) > 0):
                l.append(syns[0])
        return l  



    def similarity_score(self, s1, s2, distance_type = 'path'):
        """
        Calculate the normalized similarity score of s1 onto s2
        For each synset in s1, finds the synset in s2 with the largest similarity value.
        Sum of all of the largest similarity values and normalize this value by dividing it by the
        number of largest similarity values found.

        Args:
          s1, s2: list of synsets from doc_to_synsets

        Returns:
          normalized similarity score of s1 onto s2
        """
        s1_largest_scores = []

        for i, s1_synset in enumerate(s1, 0):
            max_score = 0
            for s2_synset in s2:
                if distance_type == 'path':
                    score = s1_synset.path_similarity(s2_synset, simulate_root = False)
                else:
                    score = s1_synset.wup_similarity(s2_synset)
                if score != None:
                    if score > max_score:
                        max_score = score

            if max_score != 0:
                s1_largest_scores.append(max_score)

        mean_score = np.mean(s1_largest_scores)

        return mean_score  



    def document_similarity(self,doc1, doc2):
              """Finds the symmetrical similarity between doc1 and doc2"""

              synsets1 = self.doc_to_synsets(doc1)
              synsets2 = self.doc_to_synsets(doc2)

              return (self.similarity_score(synsets1, synsets2) + self.similarity_score(synsets2, synsets1)) / 2


#doc1 = 'I like rains'
#doc2 = 'I like showers'
#x = KNN_NLC_Classifer()
#print("Test Similarity Score: ", x.document_similarity(doc1, doc2))


# 1. Importing the dataset
#we'll use the demo dataset available at Watson NLC Classifier Demo.
FILENAME = "https://raw.githubusercontent.com/watson-developer-cloud/natural-language-classifier-nodejs/master/training/weather_data_train.csv"          

dataset = pd.read_csv(FILENAME, header = None)

dataset.rename(columns = {0:'text', 1:'answer'}, inplace = True)

dataset['output'] = np.where(dataset['answer'] == 'temperature', 1,0)
Num_Words = dataset.shape[0]


print(dataset.head())
print("\nSize of input file is ", dataset.shape)

array = dataset.values
X = array[:,2]
Y = array[:,0]
validation_size = 0.20
seed = 7

# 4. Train the Classifier
classifier = KNN_NLC_Classifer(k=1, distance_type='path')
x_train,y_train = X,Y
classifier.fit(x_train, y_train)

final_test_list = ['will it rain', 'Is it hot outside?' , 'What is the expected high for today?' , 
                   'Will it be foggy tomorrow?', 'Should I prepare for sleet?',
                     'Will there be a storm today?', 'do we need to take umbrella today',
                    'will it be wet tomorrow', 'is it humid tomorrow', 'what is the precipitation today',
                    'is it freezing outside', 'is it cool outside', "are there strong winds outside",]

test_corpus = []
lmtzr = WordNetLemmatizer()
#ps = PorterStemmer()
for i in range(len(final_test_list)):
    review = re.sub('[^a-zA-Z]', ' ', final_test_list[i])
    review = review.lower()
    review = review.split()

    review = [lmtzr.lemmatize(word) for word in review] # if not word in s
    review = ' '.join(review)
    test_corpus.append(review)

y_pred_final = classifier.predict(test_corpus)

output_df = pd.DataFrame(data = {'text': final_test_list, 'code': y_pred_final})
output_df['answer'] = np.where(output_df['code']==1, 'Temperature','Conditions')
print(output_df)

Upvotes: 0

Views: 429

Answers (2)

ujhuyz0110
ujhuyz0110

Reputation: 383

In the tutorial, the method similarity_score() tries to find the highest similarity for each synset in s1 and average them. However, it doesn't count the words in s1 that couldn't find any synset in s2 into account. It makes more sense to me if we add zeros into s1_largest_scores for those occasions.

Take two sentences "Will it be uncomfortably hot?" and "will it rain" for example. The method in the tutorial will give you 1 for similarity while the method that I purposed will give you 0.53 for similarity. The sentences are in different categories so we'd like the similarity to be low.

Here is my code:

import re

import nltk
from nltk.corpus import wordnet as wn
from nltk.corpus import genesis
import ssl

try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    pass
else:
    ssl._create_default_https_context = _create_unverified_https_context

nltk.download('genesis')
nltk.download('wordnet')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
genesis_ic = wn.ic(genesis, False, 0.0)

import numpy as np
import pandas as pd
from nltk.tokenize import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import SnowballStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.corpus import stopwords
from sklearn.metrics import roc_auc_score

from nltk.stem.wordnet import WordNetLemmatizer

class KNN_NLC_Classifer():
    def __init__(self, k=1, distance_type = 'path'):
        self.k = k
        self.distance_type = distance_type

    # This function is used for training
    def fit(self, x_train, y_train):
        self.x_train = x_train
        self.y_train = y_train

    # This function runs the K(1) nearest neighbour algorithm and
    # returns the label with closest match.
    def predict(self, x_test):
        self.x_test = x_test
        y_predict = []

        for i in range(len(x_test)):
            max_sim = 0
            max_index = 0
            for j in range(self.x_train.shape[0]):
                temp = self.document_similarity(x_test[i], self.x_train[j])
                if temp > max_sim:
                    max_sim = temp
                    max_index = j

            y_predict.append(self.y_train[max_index])
        return y_predict

    def convert_tag(self, tag):
        """Convert the tag given by nltk.pos_tag to the tag used by wordnet.synsets"""
        tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'}
        try:
            return tag_dict[tag[0]]
        except KeyError:
            return None

    def doc_to_synsets(self, doc):
        """
            Returns a list of synsets in document.
            Tokenizes and tags the words in the document doc.
            Then finds the first synset for each word/tag combination.
        If a synset is not found for that combination it is skipped.

        Args:
            doc: string to be converted

        Returns:
            list of synsets
        """
        tokens = word_tokenize(str(doc)+' ')

        l = []
        tags = nltk.pos_tag([tokens[0] + ' ']) if len(tokens) == 1 else nltk.pos_tag(tokens)
        for token, tag in zip(tokens, tags):
            syntag = self.convert_tag(tag[1])
            syns = wn.synsets(token, syntag)
            if (len(syns) > 0):
                l.append(syns[0])

        return l



    def similarity_score(self, s1, s2, distance_type = 'path'):
        """
        Calculate the normalized similarity score of s1 onto s2
        For each synset in s1, finds the synset in s2 with the largest similarity value.
        Sum of all of the largest similarity values and normalize this value by dividing it by the
        number of largest similarity values found.

        Args:
          s1, s2: list of synsets from doc_to_synsets

        Returns:
          normalized similarity score of s1 onto s2
        """
        s1_largest_scores = []

        for i, s1_synset in enumerate(s1):
            max_score = 0
            for s2_synset in s2:
                if distance_type == 'path':
                    score = s1_synset.path_similarity(s2_synset, simulate_root=False)
                else:
                    score = s1_synset.wup_similarity(s2_synset)

                if score != None and score > max_score:
                    max_score = score

            # if max_score != 0:
            s1_largest_scores.append(max_score)
        mean_score = np.mean(s1_largest_scores)

        return mean_score



    def document_similarity(self,doc1, doc2):
        """Finds the symmetrical similarity between doc1 and doc2"""

        synsets1 = self.doc_to_synsets(doc1)
        synsets2 = self.doc_to_synsets(doc2)

        return (self.similarity_score(synsets1, synsets2) + self.similarity_score(synsets2, synsets1)) / 2




# 1. Importing the dataset
#we'll use the demo dataset available at Watson NLC Classifier Demo.
FILENAME = "https://raw.githubusercontent.com/watson-developer-cloud/natural-language-classifier-nodejs/master/training/weather_data_train.csv"

dataset = pd.read_csv(FILENAME, header = None)

dataset.rename(columns = {0:'text', 1:'answer'}, inplace = True)

dataset['output'] = np.where(dataset['answer'] == 'temperature', 1,0)
Num_Words = dataset.shape[0]


print(dataset)
print("\nSize of input file is ", dataset.shape)

array = dataset.values
X = array[:,0]
Y = array[:,2]
validation_size = 0.20
seed = 7

# 4. Train the Classifier
classifier = KNN_NLC_Classifer(k=1, distance_type='path')
x_train,y_train = X, Y
classifier.fit(x_train, y_train)

final_test_list = [
    'will it rain',
    'Is it hot outside?',
    'What is the expected high for today?',
    'Will it be foggy tomorrow?',
    'Should I prepare for sleet?',
    'Will there be a storm today?',
    'do we need to take umbrella today',
    'will it be wet tomorrow',
    'is it humid tomorrow',
    'what is the precipitation today',
    'is it freezing outside',
    'is it cool outside',
    'are there strong winds outside',
    ]

test_corpus = []
lmtzr = WordNetLemmatizer()
#ps = PorterStemmer()
for i in range(len(final_test_list)):
    review = re.sub('[^a-zA-Z]', ' ', final_test_list[i])
    review = review.lower()
    review = review.split()

    review = [lmtzr.lemmatize(word) for word in review] # if not word in s
    review = ' '.join(review)
    test_corpus.append(review)

y_pred_final = classifier.predict(test_corpus)


output_df = pd.DataFrame(data = {'text': final_test_list, 'code': y_pred_final})
output_df['answer'] = np.where(output_df['code']==1, 'Temperature', 'Conditions')
print(output_df)

And here is the result which I consider more reasonable:

                                    text  code       answer
0                           will it rain     0   Conditions
1                     Is it hot outside?     1  Temperature
2   What is the expected high for today?     1  Temperature
3             Will it be foggy tomorrow?     1  Temperature
4            Should I prepare for sleet?     0   Conditions
5           Will there be a storm today?     1  Temperature
6      do we need to take umbrella today     0   Conditions
7                will it be wet tomorrow     1  Temperature
8                   is it humid tomorrow     1  Temperature
9        what is the precipitation today     1  Temperature
10                is it freezing outside     1  Temperature
11                    is it cool outside     1  Temperature
12        are there strong winds outside     0   Conditions

Upvotes: 2

ujhuyz0110
ujhuyz0110

Reputation: 383

After printing out x_train and y_train, you'll figure out the bug.

For some reason, your Y is the feature while your X is your label. If you changed the line x_train, y_train = X, Y to x_train, y_train = Y, X, it would work.

Upvotes: 1

Related Questions