Reputation: 685
I want my dataframe to get splitted into smaller dfs, based on 'z' value. In this case, 2 dfs as I only want to take whats between the zeros (z column). i.e. Dataframe1: 01/10/2018 0:30 - 1/10/2018 1:20 AND Dataframe2: 01/10/2018 2:00 - 1/10/2018 2:40
How can this be done in a loop for bigger datasets? Discarding the zeroes and only putting whats in between.
Upvotes: 0
Views: 1142
Reputation: 10819
You can use groupby for that.
grouped = df.groupby('z')
dataframes = [grouped.get_group(x) for x in grouped.groups]#list of DataFrames
Upvotes: 2
Reputation: 166
Here, I am having a sample dataset with two columns and few sample rows. I have splitted this dataframe into three new dataframes based on a condition (col2 divisible by 3 and arrange them as per their remainder values).
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
data = pd.DataFrame({'Col1':np.arange(datetime(2018,1,1),datetime(2018,1,12),timedelta(days=1)).astype(datetime),'Col2':np.arange(1,12,1)})
print('Data:')
print(data)
# split dataframe into three dataframes based on the col2 divisible by 3
# col2 % 3 == 0 then data_0
# col2 % 3 == 1 then data_1
# col2 % 3 == 2 then data_2
data_0, data_1, data_2 = data[data['Col2']%3==0], data[data['Col2']%3==1],data[data['Col2']%3==2]
print('Data_0:')
print(data_0)
print('Data_1:')
print(data_1)
print('Data_2:')
print(data_2)
The generated output is as:
Data:
Col1 Col2
0 2018-01-01 1
1 2018-01-02 2
2 2018-01-03 3
3 2018-01-04 4
4 2018-01-05 5
5 2018-01-06 6
6 2018-01-07 7
7 2018-01-08 8
8 2018-01-09 9
9 2018-01-10 10
10 2018-01-11 11
Data_0:
Col1 Col2
2 2018-01-03 3
5 2018-01-06 6
8 2018-01-09 9
Data_1:
Col1 Col2
0 2018-01-01 1
3 2018-01-04 4
6 2018-01-07 7
9 2018-01-10 10
Data_2:
Col1 Col2
1 2018-01-02 2
4 2018-01-05 5
7 2018-01-08 8
10 2018-01-11 11
Hope, this may helps you.
Upvotes: 0