Reputation: 47
I have several 'condition' columns in a dataset. These columns are all eligible to receive the same coded input. This is only to allow multiple conditions to be associated with a single record - which column the code winds up in carries no meaning.
In the sample below there are only 5 unique values across the 3 condition columns, although if you consider each column separately, there are 3 unique values in each. So when I apply one-hot encoding to these variables together I get 9 new columns, but I only want 5 (one for each unique value in the collective set of columns).
Here is a sample of the original data:
| cond1 | cond2 | cond3 | target |
|-------|-------|-------|--------|
| I219 | E119 | I48 | 1 |
| I500 | | | 0 |
| I48 | I500 | F171 | 1 |
| I219 | E119 | I500 | 0 |
| I219 | I48 | | 0 |
Here's what I tried:
import pandas as pd
df = pd.read_csv('micro.csv', dtype='object')
df['cond1'] = pd.Categorical(df['cond1'])
df['cond2'] = pd.Categorical(df['cond2'])
df['cond3'] = pd.Categorical(df['cond3'])
dummies = pd.get_dummies(df[['cond1', 'cond2', 'cond3']], prefix = 'cond')
dummies
Which gives me:
| cond_I219 | cond_I48 | cond_I500 | cond_E119 | cond_I48 | cond_I500 | cond_F171 | cond_I48 | cond_I500 |
|-----------|----------|-----------|-----------|----------|-----------|-----------|----------|-----------|
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
So I have multiple coded columns for any code that appears in more than one column (I48 and I500).. I would like only a single column for each so I can check for correlations between individual codes and my target variable.
Is there a way to do this? This is the result I'm after:
| cond_I219 | cond_I48 | cond_I500 | cond_E119 | cond_F171 |
|-----------|----------|-----------|-----------|-----------|
| 1 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
Upvotes: 2
Views: 508
Reputation: 765
pd.get_dummies(df1.iloc[:,:-1]).rename(columns=lambda x:x.split('_')[1]).T.groupby(level=0).sum().T
| cond_I219 | cond_I48 | cond_I500 | cond_E119 | cond_F171 |
|-----------|----------|-----------|-----------|-----------|
| 1 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
Upvotes: 0
Reputation: 862691
Get max
values if need 1
and 0
data in output:
dfDummies = dummies.max(axis=1, level=0)
Or use sum
if need count 1
values:
dfDummies = dummies.sum(axis=1, level=0)
Upvotes: 2