Reputation: 483
I am trying to transform an image along the edge of the object (here the object is the book). Using canny edge detection, I am detecting the edges and from the score matrix, based on pixel value, I am choosing a random 4 coordinates lying on the edge for transformation. But the transformation is not as it thought it would be. What is the problem/Where am I missing out?
First I have sliced out a portion of the image. Then applied canny edge detection and randomly selected 4 edge coordinate points based on my own condition as: My original image is:
For experiment I have sliced out according to my need as:
The size of this image (61,160)
Now I need to transform the above image to make the edge of the book parallel to the horizontal axis.
img = cv2.imread('download1.jpg',0)
edges = cv2.Canny(img,100,200)
print(img.shape)
plt.show()
plt.imshow(img,cmap='gray')
l=[]
y_list=[]
k=1
for i in range (0,img.shape[0]):
for j in range (0,img.shape[1]):
if (edges[i][j]==255) and k<=4 and i>31 and j not in y_list:
l.append([j,i])
y_list.append(j)
k+=1
break
The edge detection image is obtained as:
The contents of l list are
[[49 32]
[44 33]
[40 34]
[36 35]]
Then set the destination points given by list lt as:
[[49 61]
[44 60]
[40 61]
[36 60]]
Then found out the homography matrix and used it to find out the warp perspective as :
h, status = cv2.findHomography(l,lt)
im_out = cv2.warpPerspective(img, h, (img.shape[1],img.shape[0]))
But it doesnot produce the required result! The resultant output image is obtained as:
Upvotes: 0
Views: 674
Reputation: 487
I faced a similar issue, and this is how I solved it (quite similar to your method actually), just I used get rotation matrix instead homografy:
hough line to get all the lines (with an inclination inside a specific interval)
lines = cv.HoughLinesP(img, 1, np.pi/180, 100, minLineLength=100, maxLineGap=10)
get lines average inclination, cause in my case I had lot of parallel lines to use as references and in this way I was able to get a better result
for line in lines:
x1,y1,x2,y2 = line[0]
if (x2-x1) != 0:
angle = math.atan((float(y2-y1))/float((x2-x1))) * 180 / math.pi
else:
angle = 90
#you can skip this test if you have no info about the lines you re looking for
#in this case offset_angle is = 0
if min_angle_threshold <= angle <= max_angle_threshold:
tot_angle = tot_angle + angle
cnt = cnt + 1
average_angle = (tot_angle / cnt) - offset_angle
apply the counter-rotation
center = your rotation center - probably the center of the image
rotation_matrix = cv.getRotationMatrix2D(center, angle, 1.0)
height, width = img.shape
rotated_image = cv.warpAffine(img, rotation_matrix, (width, height))
#do whatever you want, then rotate image back
counter_rotation_matrix = cv.getRotationMatrix2D(center, -angle, 1.0)
original_image = cv.warpAffine( rotated_image, counter_rotation_matrix, (width, height))
Edit: see the full example here:
import math
import cv2 as cv
img = cv.imread('C:\\temp\\test_3.jpg',0)
edges = cv.Canny(img,100,200)
lines = cv.HoughLinesP(edges[0:50,:], 1, np.pi/180, 50, minLineLength=10, maxLineGap=10)
tot_angle = 0
cnt = 0
for line in lines:
x1,y1,x2,y2 = line[0]
if (x2-x1) != 0:
angle = math.atan((float(y2-y1))/float((x2-x1))) * 180 / math.pi
else:
angle = 90
if -30 <= angle <= 30:
tot_angle = tot_angle + angle
cnt = cnt + 1
average_angle = (tot_angle / cnt)
h,w = img.shape[:2]
center = w/2, h/2
rotation_matrix = cv.getRotationMatrix2D(center, average_angle, 1.0)
height, width = img.shape
rotated_image = cv.warpAffine(img, rotation_matrix, (width, height))
cv.imshow("roto", rotated_image)
#do all your stuff here, add text and whatever
#...
#...
counter_rotation_matrix = cv.getRotationMatrix2D(center, -average_angle, 1.0)
original_image = cv.warpAffine( rotated_image, counter_rotation_matrix, (width, height))
cv.imshow("orig", original_image)
rotated
]1
counter_rotated
]2
EDIT:
in case you want apply an homography(different than just a simple rotation, 'cause it also applies a perspective transformation), below the code to make it work:
#very basic example, similar to your code with fixed terms
l = np.array([(11,32),(43,215),(142,1),(205,174)])
lt = np.array([(43,32),(43,215),(205,32),(205,215)])
h, status = cv.findHomography(l,lt)
im_out = cv.warpPerspective(img, h, (img.shape[1],img.shape[0]))
To do it programmatically - for "l" : just use houghlines as well and find the 4 corners, then add them
for "lt": find a "destination" for all the 4 points, for instance use the bottom corners as reference
lines = cv.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=150, maxLineGap=5)
l = []
for line in lines:
x1,y1,x2,y2 = line[0]
if (x2-x1) != 0:
angle = math.atan((float(y2-y1))/float((x2-x1))) * 180 / math.pi
else:
angle = 90
# consider only vertical edges
if 60 <= angle:
l.append((x1,y1))
l.append((x2,y2))
x_values.append(max(x1,x2))
if len(y_values) == 0:
y_values.append(y1)
y_values.append(y2)
l = np.array(l)
lt = np.array([(x_values[0],y_values[0]),(x_values[0],y_values[1]),(x_values[1],y_values[0]),(x_values[1],y_values[1])])
then call findhomography as done above Hope it's clear enough!
Upvotes: 1