Reputation: 27936
I have some numpy array, whose number of rows (axis=0) is the same as a pandas dataframe's number of rows.
I want to create a new column in the dataframe, for which each entry would be a numpy array of a lesser dimension.
Code:
some_df = pd.DataFrame(columns=['A'])
for i in range(10):
some_df.loc[i] = [np.random.rand(4, 6, 8)
data = np.stack(some_df['A'].values) #shape (10, 4, 6, 8)
processed = np.max(data, axis=1) # shape (10, 6, 8)
some_df['B'] = processed # This fails
I want the new column 'B'
to contain numpy arrays of shape (6, 8)
How can this be done?
Upvotes: 3
Views: 8674
Reputation: 862481
This is not recommended, it is pain, slow and later processing is not easy.
One possible solution is use list comprehension:
some_df['B'] = [x for x in processed]
Or convert to list and assign:
some_df['B'] = processed.tolist()
Upvotes: 5
Reputation: 27936
Coming back to this after 2 years, here is a much better practice:
from itertools import product, chain
import pandas as pd
import numpy as np
from typing import Dict
def calc_col_names(named_shape):
*prefix, shape = named_shape
names = [map(str, range(i)) for i in shape]
return map('_'.join, product(prefix, *names))
def create_flat_columns_df_from_dict_of_numpy(
named_np: Dict[str, np.array],
n_samples_per_np: int,
):
named_np_correct_lenth = {k: v for k, v in named_np.items() if len(v) == n_samples_per_np}
flat_nps = [a.reshape(n_samples_per_np, -1) for a in named_np_correct_lenth.values()]
stacked_nps = np.column_stack(flat_nps)
named_shapes = [(name, arr.shape[1:]) for name, arr in named_np_correct_lenth.items()]
col_names = [*chain.from_iterable(calc_col_names(named_shape) for named_shape in named_shapes)]
df = pd.DataFrame(stacked_nps, columns=col_names)
df = df.convert_dtypes()
return df
def parse_series_into_np(df, col_name, shp):
# can parse the shape from the col names
n_samples = len(df)
col_names = sorted(c for c in df.columns if col_name in c)
col_names = list(filter(lambda c: c.startswith(col_name + "_") or len(col_names) == 1, col_names))
col_as_np = df[col_names].astype(np.float).values.reshape((n_samples, *shp))
return col_as_np
usage to put a ndarray into a Dataframe:
full_rate_df = create_flat_columns_df_from_dict_of_numpy(
named_np={name: np.array(d[name]) for name in ["name1", "name2"]},
n_samples_per_np=d["name1"].shape[0]
)
where d
is a dict of nd arrays of the same shape[0]
, hashed by ["name1", "name2"]
.
The reverse operation can be obtained by parse_series_into_np
.
The accepted answer remains, as it answers the original question, but this one is a much better practice.
Upvotes: 1
Reputation: 51
I know this question already has an answer to it, but I would like to add a much more scalable way of doing this. As mentioned in the comments above it is in general not recommended to store arrays as "field"-values in a pandas-Dataframe column (I actually do not know why?). Nevertheless, in my day to day work this is an extermely important functionality when working with time-series data and a bunch of related meta-data. In general I organize my experimantal time-series in form of pandas dataframes with one column holding same-length numpy arrays and the other columns containing information on meta-data with respect to certain measurement conditions etc.
The proposed solution by jezrael works very well, and I used this for the last 4 years on a regular basis. But this method potentially encounters huge memory problems. In my case I came across these problems working with dataframes beyond 5 Million rows and time-series with approx. 100 data points.
The solution to these problems is extremely simple, since I did not find it anywhere I just wanted to share it here: Simply transform your 2D array to a pandas-Series object and assign this to a column of your dataframe:
df["new_list_column"] = pd.Series(list(numpy_array_2D))
Upvotes: 0