Reputation: 51
I want to compare a data frame of one column with another data frame of multiple columns and return the header of the column having maximum match percentage.
I am not able to find any match functions in pandas. First data frame first column :
cars
----
swift
maruti
wagonor
hyundai
jeep
First data frame second column :
bikes
-----
RE
Ninja
Bajaj
pulsar
one column data frame :
words
---------
swift
RE
maruti
waganor
hyundai
jeep
bajaj
Desired output :
100% match header - cars
Upvotes: 5
Views: 2907
Reputation: 125
Try to use isin function of pandas DataFrame. Assuming df is your first dataframe and words is a list :
In[1]: (df.isin(words).sum()/df.shape[0])*100
Out[1]:
cars 100.0
bikes 20.0
dtype: float64
You may need to lowercase strings in your df and in the words list to avoid any casing issue.
Upvotes: 3
Reputation: 552
Here is a solution with a function that returns a tuple (column_name, match_percentage)
for the column with the maximum match percentage. It accepts a pandas dataframe (bikes and cars in your example) and a series (words) as arguments.
def match(df, se):
max_matches = 0
max_col = None
for col in df.columns:
# Get the number of matches in a column
n_matches = sum([1 for row in df[col] if row in se.unique()])
if n_matches > max_matches:
max_col = col
max_matches = n_matches
return max_col, max_matches/df.shape[0]
With your example, you should get the following output.
df = pd.DataFrame()
df['Cars'] = ['swift', 'maruti', 'wagonor', 'hyundai', 'jeep']
df['Bikes'] = ['RE', 'Ninja', 'Bajaj', 'pulsar', '']
se = pd.Series(['swift', 'RE', 'maruti', 'wagonor', 'hyundai', 'jeep', 'bajaj'])
In [1]: match(df, se)
Out[1]: ('Cars', 1.0)
Upvotes: 0
Reputation: 18647
Construct a Series
using numpy.in1d
and ndarray.mean
then call the Series.idxmax
and max
methods:
# Setup
df1 = pd.DataFrame({'cars': {0: 'swift', 1: 'maruti', 2: 'waganor', 3: 'hyundai', 4: 'jeep'}, 'bikes': {0: 'RE', 1: 'Ninja', 2: 'Bajaj', 3: 'pulsar', 4: np.nan}})
df2 = pd.DataFrame({'words': {0: 'swift', 1: 'RE', 2: 'maruti', 3: 'waganor', 4: 'hyundai', 5: 'jeep', 6: 'bajaj'}})
match_rates = pd.Series({col: np.in1d(df1[col], df2['words']).mean() for col in df1})
print('{:.0%} match header - {}'.format(match_rates.max(), match_rates.idxmax()))
[out]
100% match header - cars
Upvotes: 1
Reputation: 6270
You can first get the columns into lists:
dfCarsList = df['cars'].tolist()
dfWordsList = df['words'].tolist()
dfBikesList = df['Bikes'].tolist()
And then iterate of the list for comparision:
numberCars = sum(any(m in L for m in dfCarsList) for L in dfWordsList)
numberBikes = sum(any(m in L for m in dfBikesList) for L in dfWordsList)
The higher number you can use than for your output.
Upvotes: 1