Reputation: 3384
data=data.frame(person=c(1,1,1,2,2,2,2,3,3,3,3),
t=c(3,NA,9,4,7,NA,13,3,NA,NA,12),
WANT=c(3,6,9,4,7,10,13,3,6,9,12))
So basically I am wanting to create a new variable 'WANT' which takes the PREVIOUS value in t and ADDS 3 to it, and if there are many NA in a row then it keeps doing this. My attempt is:
library(dplyr)
data %>%
group_by(person) %>%
mutate(WANT_TRY = fill(t) + 3)
Upvotes: 1
Views: 451
Reputation: 1950
You can use functional programming from purrr
and "NA-safe" addition from hablar
:
library(hablar)
library(dplyr)
library(purrr)
data %>%
group_by(person) %>%
mutate(WANT2 = accumulate(t, ~.x %plus_% 3))
Result
# A tibble: 11 x 4
# Groups: person [3]
person t WANT WANT2
<dbl> <dbl> <dbl> <dbl>
1 1 3 3 3
2 1 NA 6 6
3 1 9 9 9
4 2 4 4 4
5 2 7 7 7
6 2 NA 10 10
7 2 13 13 13
8 3 3 3 3
9 3 NA 6 6
10 3 NA 9 9
11 3 12 12 12
Upvotes: 1
Reputation: 234
This is harder than it seems because of the double NA
at the end. If it weren't for that, then the following:
ifelse(is.na(data$t), c(0, data$t[-nrow(data)])+3, data$t)
...would give you want you want. The simplest way, that uses the same logic but doesn't look very clever (sorry!) would be:
.impute <- function(x) ifelse(is.na(x), c(0, x[-length(x)])+3, x)
.impute(.impute(data$t))
...which just cheats by doing it twice. Does that help?
Upvotes: 0
Reputation: 39154
Here is another way. We can do linear interpolation with the imputeTS
package.
library(dplyr)
library(imputeTS)
data2 <- data %>%
group_by(person) %>%
mutate(WANT2 = na.interpolation(WANT)) %>%
ungroup()
data2
# # A tibble: 11 x 4
# person t WANT WANT2
# <dbl> <dbl> <dbl> <dbl>
# 1 1 3 3 3
# 2 1 NA 6 6
# 3 1 9 9 9
# 4 2 4 4 4
# 5 2 7 7 7
# 6 2 NA 10 10
# 7 2 13 13 13
# 8 3 3 3 3
# 9 3 NA 6 6
# 10 3 NA 9 9
# 11 3 12 12 12
Upvotes: 1
Reputation: 11140
Here's one way -
data %>%
group_by(person) %>%
mutate(
# cs = cumsum(!is.na(t)), # creates index for reference value; uncomment if interested
w = case_when(
# rle() gives the running length of NA
is.na(t) ~ t[cumsum(!is.na(t))] + 3*sequence(rle(is.na(t))$lengths),
TRUE ~ t
)
) %>%
ungroup()
# A tibble: 11 x 4
person t WANT w
<dbl> <dbl> <dbl> <dbl>
1 1 3 3 3
2 1 NA 6 6
3 1 9 9 9
4 2 4 4 4
5 2 7 7 7
6 2 NA 10 10
7 2 13 13 13
8 3 3 3 3
9 3 NA 6 6
10 3 NA 9 9
11 3 12 12 12
Upvotes: 1